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Reduction of block diagrams

• Complex systems are often graphically represented by block diagrams obtai-

ned connecting in series/parallel the oriented blocks (static, dynamic, linear,

non-linear, etc.) which describe the functionalities of the physical elements

which are present in the system.

x y
K

y(t) = K x(t)

1) Static linear block

x y
G(s)

Y (s) = G(s)X(s)

2) Dynamic linear block

x y
f (x)

y = f(x)

3) Static nonlinear block

• In the block diagrams, the individual oriented elements are connected to each

other by “branch points” and “summation points”:

x

x

x

x

y

z

• Main rules for a graphical reduction of the block schemes:

diagram
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Example of graphical reduction of a block scheme
degreesdiagram

G4 =
G2G3

1+G2G3H1

phase

G5 =
G1G4

1+G1G4H2

B1 =
BG5

G1G2

• Minimum form:

c =
G1G2G3 r + BG3 d

1 +G2G3H1 +G1G2G3H2
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Mason’s formula

• Given a block scheme, an input X and an output Y , the Mason’s formula

is a simple and direct way for computing the transfer function G = Y
X

that links the input X to the output Y :

G =
Y

X
=

1

∆

∑

i∈P

Pi∆i

• P is the set of indices of all the distinct paths that connect the input X

to the output Y . Pi is the coefficient of the i-th path, that is the product

of the coefficients of all the elements which belongs to the i-th path. ∆

is the determinant of the whole block diagram. ∆i is the determinant of

the partial block diagram that is obtained by eliminating from the scheme

all the elements belonging to the i-th path.

• The determinant ∆ of a block diagram is calculated as follows:

∆ := 1−
∑

i∈J1

Ai +
∑

(i,j)∈J2

AiAj −
∑

(i,j,k)∈J3

AiAj Ak + . . .

where Ai is the coefficient of the i-th ring (i.e. a closed path), J1 is the

set of indices of all the rings of the block diagram, J2 is the set of indices

of all the pairs of rings that do not touch each other, . . ., Jn is the set of

indices of all the n-ple of rings that do not touch n to n.

• Example. Given the following block diagram, calculate the transfer func-

tion G = Y
X that links the input X to the output Y :

X
a b c d

Y

e

g f

h

roberto
Evidenziato

roberto
Evidenziato
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• A path is a sequence of adjacent branches and nodes without rings in

which each element is crossed only once. The coefficient P of the path is

the product of the gains of the branches that compose the path. Example: the

coefficient P1 of the path highlighted in the following figure is P1 = abcd.

X
a b c d

Y

e

g f

h

• A ring is a closed path. The coefficient A of the ring is the product of

the gains of the branches that compose the ring. Example: the coefficient A2

of the ring highlighted in the following figure is A2 = bcdh.

b c d

h

X Y
a

e

g f

• Two paths or two rings do not touch each other when they have no

common points.

• To calculate the determinant∆ of a block diagram, it is necessary to compute

the P , J1, J2 sets, etc.

• The set P = {1, 2, 3} is the set of indices of all the paths of the block

diagram that connect the input variable X to the output variable Y . For each

index i, the corresponding path coefficient Pi must be computed:

P1 = abcd, P2 = aed, P3 = abf.
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• The set J1 = {1, 2, 3, 4} is the set of indices of all the rings in the block

diagram. For each index i, the corresponding ring coefficient Ai must be

computed:

A1 = edh, A2 = bcdh, A3 = bfh, A4 = g.

• The set J2 = {(1, 4)} is the set of COUPLES of indexes of the rings of the

block diagram that DO NOT touch each other:

J2 = {(1, 4)}.

• The set Jn = { } for n ∈ [3, 4, . . .] is the set of n-PLES of ring indices of

the block diagram that DO NOT touch n to n:

J3 = J4 = ... = Jn = { }.

• Once the sets J1, J2, . . ., Jn and the coefficients Ai of all rings have been

calculated, the determinant ∆ the block diagram can be obtained as follows:

∆
def
= 1−

∑

i∈J1

Ai +
∑

(i,j)∈J2

AiAj −
∑

(i,j,k)∈J3

AiAjAk + ...

For the considered case we have that:
∑

i∈J1

Ai = edh + bcdh + bfh + g,
∑

(i,j)∈J2

AiAj = edhg

so the determinant ∆ of the block diagram is:

∆ = 1− edh− bcdh− bfh− g + edhg.

Remarks:

• The determinant of a block scheme depends ONLY on the rings which are

present inside the block scheme and not on the input and output variables.

• All the possible transfer functions that can be obtained from a block

diagram are characterized by the same determinant ∆.

• The determinants ∆i of the partial block schemes associated to the paths

Pi are calculated in the same way.
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• The partial block diagram associated with the path P2 = aed, for example,

is determined by deleting all nodes and all branches belonging to the path

P2. For the following partial block diagram we have: ∆2 = 1− g.

X Y
a d

e

b c

g f

h

• For the considered system, the ∆i determinants of the partial block sche-

mes associated with the Pi paths are as follows:

∆1 = 1, ∆2 = 1− g, ∆3 = 1.

• The numerator of Mason’s formula is therefore the following:
∑

i∈P

Pi∆i = abcd(1) + aed(1− g) + abf (1)

• The transfer function G(s) = Y (s)
X(s) which links the input X to the output

Y is then the following:

G(s) =
abcd + aed(1− g) + abf

1− edh− bcdh− bfh− g + edhg
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• Example 1:

Minimum form:

c =
G1G2G3 r + BG3 d

1 +G2G3H1 +G1G2G3H2

• Example 2:

• Transfer function:

y

x
=

ADBC + ADE (1+B C)

1 + B C + C DF

roberto
Evidenziato
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• Example 3:
degrees

• Transfer function:

y

x
=

G1G2

1 +G1H1 +G2H2 +G1G2

• Example 4:

cus

• Transfer function:

C(s)

R(s)
=

G1G2G3 +G1H1G3

1 +G1G2G3 +G1H1G3 +G2H2 +G2G3H3 +H1G3H3

roberto
Evidenziato
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• Example 5. Block diagram of a DC electric motor:

V

Ia

- �

1

R + Ls

?

?

� - - Ke
-

Cm

�
E

�Ke
� -

1

b + Js

6

6

ωm

- � Ce

• The output variable ωm(s) can be expressed as a function of the input

variables V (s) and Ce(s) as follows:

ωm(s) = G1(s)V (s) +G2(s)Ce(s)

where G1(s) links the input V (s) to the output ωm(s):

G1(s) =
ωm(s)

V (s)
=

Ke

(R + Ls)(b + J s)

1 +
K2

e

(R + Ls)(b + J s)

=
Ke

(R + Ls)(b + J s) +K2
e

and G2(s) links the input Ce(s) to the output ωm(s):

G2(s) =
ωm(s)

Ce(s)
=

−
1

(b + J s)

1 +
K2

e

(R + Ls)(b + J s)

=
−(R + Ls)

(R + Ls)(b + J s) +K2
e
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• Example 5. Block diagram of an hydraulic clutch:

P

Q

- �

Kv

?

?

� -

� -

1

Cm s

6

6

P1

- � �

Qx

�A

- A -
Fx

- �

1

b+mps

?

?

ẋ
� -

� -

6

1
s

6

Km

6

Fm

- �

x

0

Using the Mason’s formula and the following auxiliary variables:

G1 = Kv, G2 =
1

Cms
, G3 =

1

b +mps
, G4 =

Km

s

one can easily obtain the following system transfer function G(s):

G(s) =
Fm(s)

P (s)
=

AG1G2G3G4

1 +G1G2 + A2G2G3 +G3G4 +G1G2G3G4

Replacing the auxiliary variables one obtains:

G(s) =
AKmKv

Cmmps3 + (Cm b +Kvmp)s2 + (A2 + CmKm +Kv b)s +KmKv
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• Example 6. Consider the following block diagram:

V0
- �

C s

?

?

� -

� -

R

6

6

- �

- �

C s

?

?

� -

� -

R

6

6

- �

- �

C s

?

?

� -

� -

R

6

6

- �

Vp

0

The transfer function G(s) which links the input V0(s) to the output Vp(s)

can be easily obtained using the Mason’s formula:

G(s) =
Vp(s)

V0(s)
=

R3C3s3

1 + 5RC s + 6R2C2 s2 + R3C3 s3

In fact, within the block diagram there are 5 distinct rings, all having ring

gains −RCs. Moreover, there are 6 couples of rings that do not touch

each other, and one set of rings that do not touch three to three. The

only path that goes from V0 to Vp pass through all the blocks.

The previous block scheme (which is not physically realizable) is equivalent to

the following physically realizable block scheme:

V0
- -

1
C s

6

6
� �

- -

1
R

?

?

� �

- -

1
C s

6

6
� �

- -

1
R

?

?

� �

- -

1
C s

6

6
� �

- -

1
R

?

?

� �

Vp

0

One can easily verify that applying the Mason’s formula to this block scheme

one obtains the same transfer function G(s) obtained applying the Mason’s

formula to the previous block scheme.
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Relative degree of a transfer function G(s)

• Let us consider a generic block scheme:

Ia

Va

� -

6

1
s

6φ

1
La

6

Ia

- �
φ̇

- -

Ra

?

?
� � �

Em

�Km

-Km
-
Cm
- �

?
1
s

?
p

1
Jm

?
ωm

� -

ṗ

� �

bm

6

6

- - -Kp
-

�
Cp

�Kp
� �

αp

?

?

Qα

- -

Qu

� -

6

1
s

6V

1
C0

6

P0

- �
V̇

P0

Q0

• For each transfer function G(s) = Y (s)
U(s) which links an input u(t) to the

output y(t), the following properties hold:

1) the order of function G(s) is equal to the number n of independent

dynamic elements which store energy within the system;

2) the poles of function G(s) are equal to the solutions of equation

∆(s) = 0 where ∆(s) is the determinant of the block scheme;

3) the relative degree of function G(s) is equal to the minimum num-

ber r of integrators present in all the paths that link the input u(t) to

the output y(t);

4) if there is only one path P1 that links the input u(t) to the output

y(t), then the zeros of function G(s) are equal to the solutions of

equation ∆1(s) = 0 where ∆1(s) is the determinant of the reduced

block scheme obtained from the original one eliminating all the blocks

touched by path P1;

G(s) = P0
Va

has 3 poles and 0 zeros because the relative degree is r = 3;

G(s) = Ia
Va

has 3 poles and 2 zeros because the relative degree is r = 1;

• Note: the higher is the relative degree the more difficult is the control.



2.1. MODELLI FISICI E SCHEMI A BLOCCHI 2.1 13

• Example 7. Let us consider the following feedback system:

r(t) e(t) 1

s + 2

d1(t)

2

s

d2(t)

y(t)

h

• Calculate the steady-state value of the variable e(t) in the presence of the

following signals: r(t) = t, d1(t) = 1 and d2(t) = 1.

Solution. Using the Laplace transform and the linearity property of the

system one obtains:

E(s) =
R(s)−

2h

s
D1(s)− hD2(s)

1 +
2h

s(s + 2)

=
s(s + 2)R(s)− 2h(s + 2)D1(s)− hs(s + 2)D2(s)

s2 + 2s + 2h

Being R(s) = 1
s2

and D1(s) = D2(s) =
1
s , you have that:

E(s) =
(s + 2)− 2h(s + 2)− hs(s + 2)

s(s2 + 2s + 2h)
=

(s + 2)(1− 2h− hs)

s(s2 + 2s + 2h)

Applying the final value theorem one obtains:

lim
t→∞

e(t) = lim
s→0

sE(s) =
1− 2h

h
=

1

h
− 2


