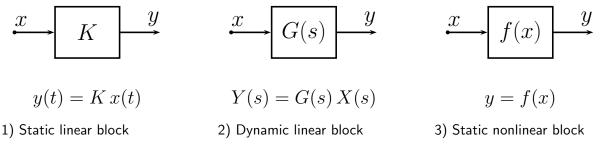
diagram

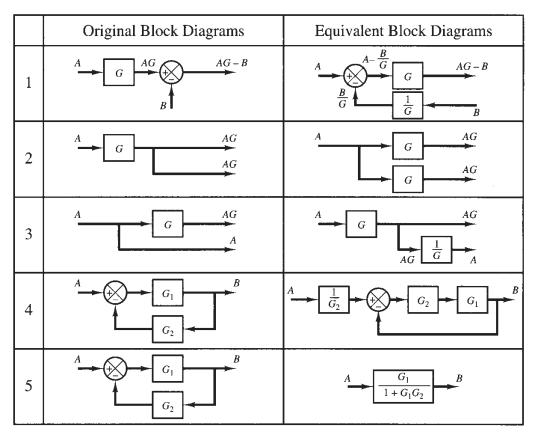
Reduction of block diagrams

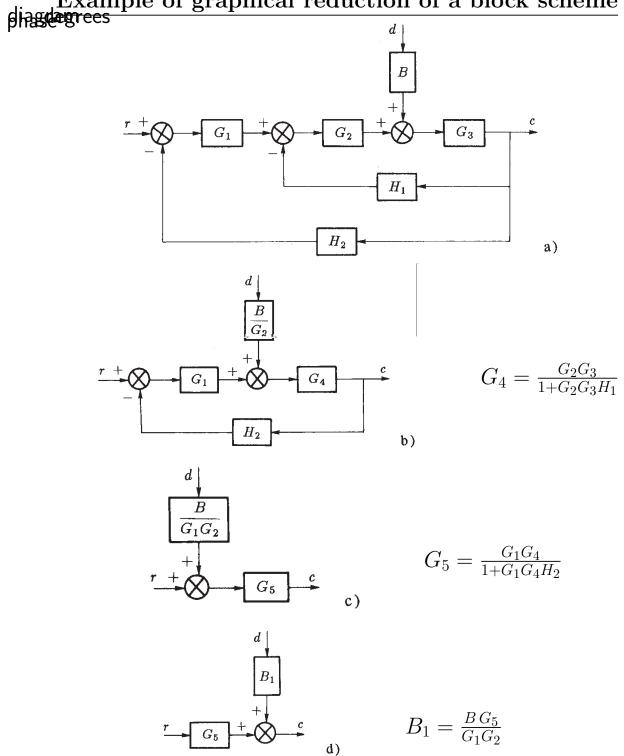
• Complex systems are often graphically represented by *block diagrams* obtained connecting in series/parallel the oriented blocks (static, dynamic, linear, non-linear, etc.) which describe the functionalities of the physical elements which are present in the system.



• In the block diagrams, the individual oriented elements are connected to each other by "branch points" and "summation points":

• Main rules for a graphical reduction of the block schemes:





Example of graphical reduction of a block scheme

• Minimum form:

$$c = \frac{G_1 G_2 G_3 r + B G_3 d}{1 + G_2 G_3 H_1 + G_1 G_2 G_3 H_2}$$

Mason's formula

• Given a block scheme, an input X and an output Y, the Mason's formula is a simple and direct way for computing the *transfer function* $G = \frac{Y}{X}$ that links the input X to the output Y:

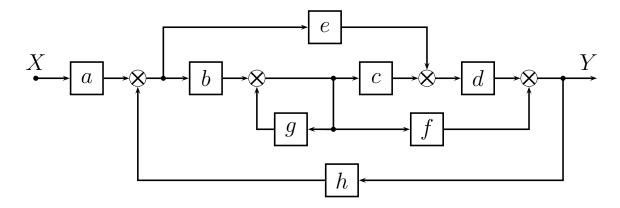
$$G = \frac{Y}{X} \equiv \frac{1}{\Delta} \sum_{i \in \mathcal{P}} P_i \Delta_i$$

- P is the set of indices of all the distinct paths that connect the input X to the output Y. P_i is the coefficient of the *i*-th path, that is the product of the coefficients of all the elements which belongs to the *i*-th path. Δ is the determinant of the whole block diagram. Δ_i is the determinant of the partial block diagram that is obtained by eliminating from the scheme all the elements belonging to the *i*-th path.
- The determinant Δ of a block diagram is calculated as follows:

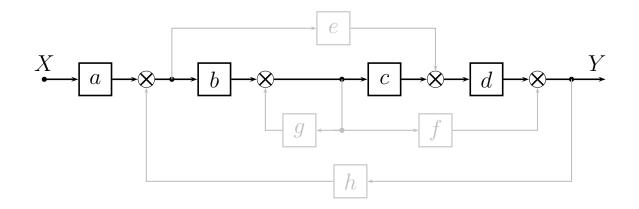
$$\Delta := 1 - \sum_{i \in \mathcal{J}_1} A_i + \sum_{(i,j) \in \mathcal{J}_2} A_i A_j - \sum_{(i,j,k) \in \mathcal{J}_3} A_i A_j A_k + \dots$$

where A_i is the coefficient of the *i*-th ring (i.e. a closed path), \mathcal{J}_1 is the set of indices of all the rings of the block diagram, \mathcal{J}_2 is the set of indices of all the rings that do not touch each other, ..., \mathcal{J}_n is the set of indices of all the *n*-ple of rings that do not touch *n* to *n*.

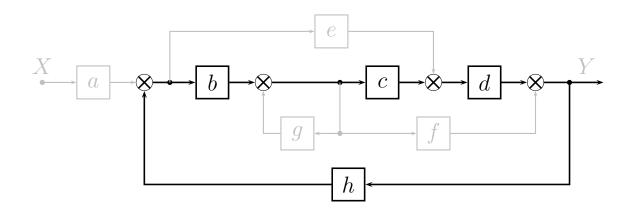
• Example. Given the following block diagram, calculate the transfer function $G = \frac{Y}{X}$ that links the input X to the output Y:



• A <u>path</u> is a sequence of adjacent branches and nodes without rings in which each element is crossed only once. The <u>coefficient</u> P of the path is the product of the gains of the branches that compose the path. Example: the coefficient P_1 of the path highlighted in the following figure is $P_1 = abcd$.



• A <u>ring</u> is a closed path. The <u>coefficient</u> A of the ring is the product of the gains of the branches that compose the ring. Example: the coefficient A_2 of the ring highlighted in the following figure is $A_2 = bcdh$.



• Two paths or two rings <u>do not touch</u> each other when they have no common points.

• To calculate the determinant Δ of a block diagram, it is necessary to compute the \mathcal{P} , \mathcal{J}_1 , \mathcal{J}_2 sets, etc.

• The set $\mathcal{P} = \{1, 2, 3\}$ is the set of indices of all the paths of the block diagram that connect the input variable X to the output variable Y. For each index *i*, the corresponding path coefficient P_i must be computed:

$$P_1 = abcd, \qquad P_2 = aed, \qquad P_3 = abf.$$

• The set $\mathcal{J}_1 = \{1, 2, 3, 4\}$ is the set of indices of all the rings in the block diagram. For each index *i*, the corresponding ring coefficient A_i must be computed:

$$A_1 = edh, \qquad A_2 = bcdh, \qquad A_3 = bfh, \qquad A_4 = g.$$

• The set $\mathcal{J}_2 = \{(1,4)\}$ is the set of COUPLES of indexes of the rings of the block diagram that DO NOT touch each other:

$$\mathcal{J}_2 = \{(1,4)\}.$$

• The set $\mathcal{J}_n = \{ \}$ for $n \in [3, 4, ...]$ is the set of *n*-PLES of ring indices of the block diagram that DO NOT touch *n* to *n*:

$$\mathcal{J}_3 = \mathcal{J}_4 = \ldots = \mathcal{J}_n = \{ \}.$$

• Once the sets \mathcal{J}_1 , \mathcal{J}_2 , ..., \mathcal{J}_n and the coefficients A_i of all rings have been calculated, the determinant Δ the block diagram can be obtained as follows:

$$\Delta \stackrel{def}{=} 1 - \sum_{i \in \mathcal{J}_1} A_i + \sum_{(i,j) \in \mathcal{J}_2} A_i A_j - \sum_{(i,j,k) \in \mathcal{J}_3} A_i A_j A_k + \dots$$

For the considered case we have that:

$$\sum_{i \in \mathcal{J}_1} A_i = edh + bcdh + bfh + g, \qquad \sum_{(i,j) \in \mathcal{J}_2} A_i A_j = edhg$$

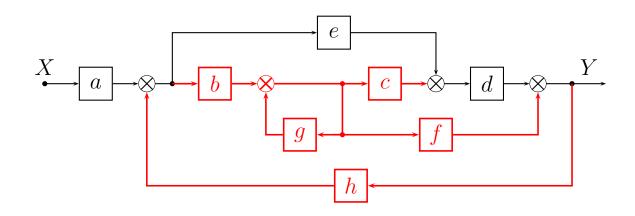
so the determinant Δ of the block diagram is:

$$\Delta = 1 - edh - bcdh - bfh - g + edhg.$$

Remarks:

- The determinant of a block scheme depends ONLY on the rings which are present inside the block scheme and not on the input and output variables.
- All the possible transfer functions that can be obtained from a block diagram are characterized by the same determinant Δ .
- The determinants Δ_i of the partial block schemes associated to the paths P_i are calculated in the same way.

The partial block diagram associated with the path P₂ = aed, for example, is determined by deleting all nodes and all branches belonging to the path P₂. For the following partial block diagram we have: Δ₂ = 1 − g.



• For the considered system, the Δ_i determinants of the partial block schemes associated with the P_i paths are as follows:

$$\Delta_1 = 1, \qquad \Delta_2 = 1 - g, \qquad \Delta_3 = 1.$$

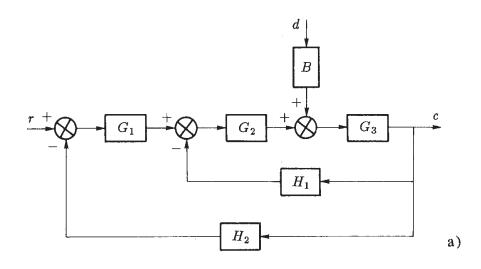
• The numerator of Mason's formula is therefore the following:

$$\sum_{i \in \mathcal{P}} P_i \Delta_i = abcd(1) + aed(1-g) + abf(1)$$

• The transfer function $G(s) = \frac{Y(s)}{X(s)}$ which links the input X to the output Y is then the following:

$$G(s) = \frac{abcd + aed(1-g) + abf}{1 - edh - bcdh - bfh - g + edhg}$$

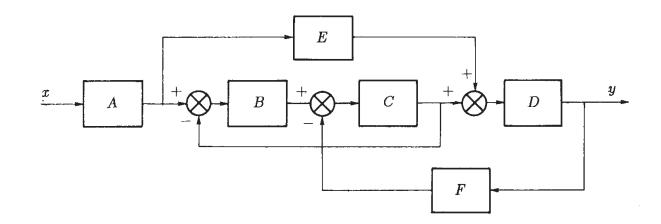
• Example 1:



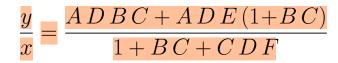
Minimum form:

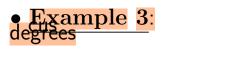
 $c = \frac{G_1 G_2 G_3 r + B G_3 d}{1 + G_2 G_3 H_1 + G_1 G_2 G_3 H_2}$

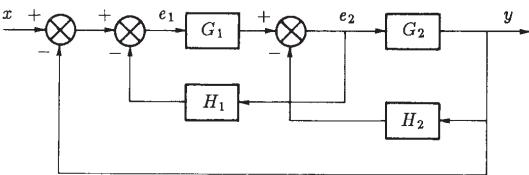
• Example 2:



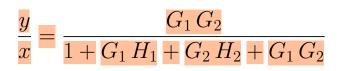
• Transfer function:



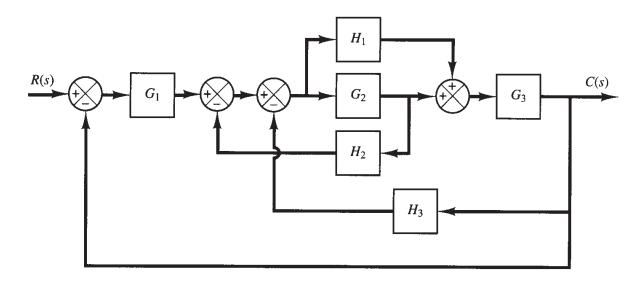




• Transfer function:



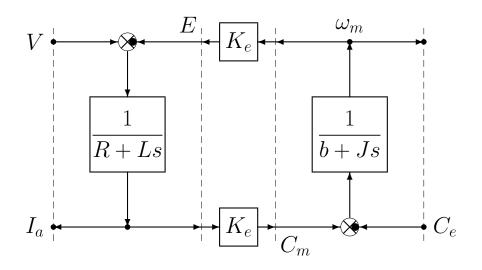
• Example 4:



• Transfer function:

$$\frac{C(s)}{R(s)} = \frac{G_1G_2G_3 + G_1H_1G_3}{1 + G_1G_2G_3 + G_1H_1G_3 + G_2H_2 + G_2G_3H_3 + H_1G_3H_3}$$

• Example 5. Block diagram of a DC electric motor:



• The output variable $\omega_m(s)$ can be expressed as a function of the input variables V(s) and $C_e(s)$ as follows:

 $\omega_m(s) = G_1(s) V(s) + G_2(s) C_e(s)$

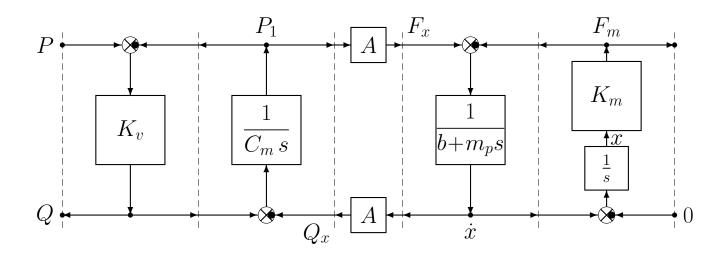
where $G_1(s)$ links the input V(s) to the output $\omega_m(s)$:

$$G_1(s) = \frac{\omega_m(s)}{V(s)} = \frac{\frac{K_e}{(R+L\,s)(b+J\,s)}}{1 + \frac{K_e^2}{(R+L\,s)(b+J\,s)}} = \frac{K_e}{(R+L\,s)(b+J\,s) + K_e^2}$$

and $G_2(s)$ links the input $C_e(s)$ to the output $\omega_m(s)$:

$$G_2(s) = \frac{\omega_m(s)}{C_e(s)} = \frac{-\frac{1}{(b+J\,s)}}{1 + \frac{K_e^2}{(R+L\,s)(b+J\,s)}} = \frac{-(R+L\,s)}{(R+L\,s)(b+J\,s) + K_e^2}$$

• Example 5. Block diagram of an hydraulic clutch:



Using the Mason's formula and the following auxiliary variables:

$$G_1 = K_v,$$
 $G_2 = \frac{1}{C_m s},$ $G_3 = \frac{1}{b + m_p s},$ $G_4 = \frac{K_m}{s}$

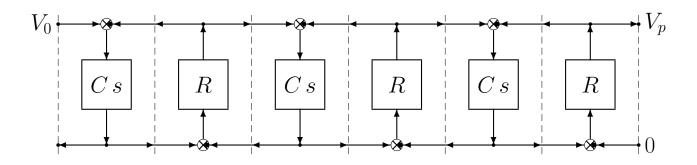
one can easily obtain the following system transfer function G(s):

$$G(s) = \frac{F_m(s)}{P(s)} = \frac{A G_1 G_2 G_3 G_4}{1 + G_1 G_2 + A^2 G_2 G_3 + G_3 G_4 + G_1 G_2 G_3 G_4}$$

Replacing the auxiliary variables one obtains:

$$G(s) = \frac{AK_m K_v}{C_m m_p s^3 + (C_m b + K_v m_p) s^2 + (A^2 + C_m K_m + K_v b) s + K_m K_v}$$

• Example 6. Consider the following block diagram:

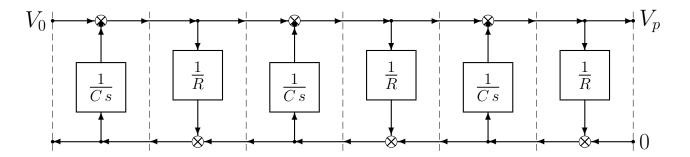


The transfer function G(s) which links the input $V_0(s)$ to the output $V_p(s)$ can be easily obtained using the Mason's formula:

$$G(s) = \frac{V_p(s)}{V_0(s)} = \frac{R^3 C^3 s^3}{1 + 5 \, R \, C \, s + 6 \, R^2 \, C^2 \, s^2 + \, R^3 \, C^3 \, s^3}$$

In fact, within the block diagram there are 5 distinct rings, all having ring gains -RCs. Moreover, there are 6 couples of rings that do not touch each other, and one set of rings that do not touch three to three. The only path that goes from V_0 to V_p pass through all the blocks.

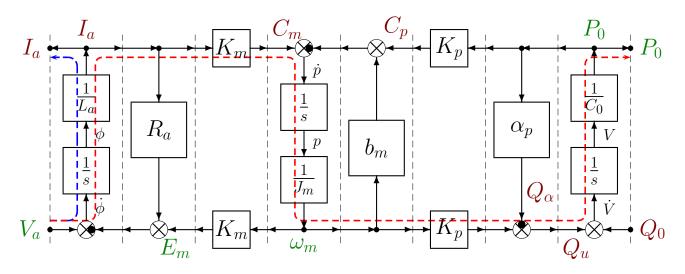
The previous block scheme (which is not physically realizable) is equivalent to the following physically realizable block scheme:



One can easily verify that applying the Mason's formula to this block scheme one obtains the same transfer function G(s) obtained applying the Mason's formula to the previous block scheme.

Relative degree of a transfer function G(s)

• Let us consider a generic block scheme:

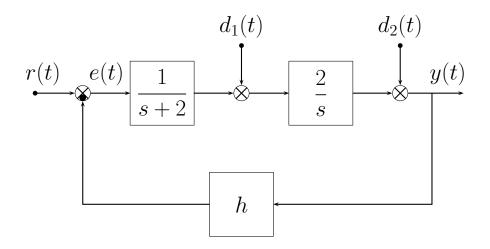


- For each transfer function $G(s) = \frac{Y(s)}{U(s)}$ which links an input u(t) to the output y(t), the following properties hold:
 - 1) the order of function G(s) is equal to the number n of independent dynamic elements which store energy within the system;
 - 2) the poles of function G(s) are equal to the solutions of equation $\Delta(s) = 0$ where $\Delta(s)$ is the determinant of the block scheme;
 - 3) the relative degree of function G(s) is equal to the minimum number r of integrators present in all the paths that link the input u(t) to the output y(t);
 - 4) if there is only one path \mathcal{P}_1 that links the input u(t) to the output y(t), then the zeros of function G(s) are equal to the solutions of equation $\Delta_1(s) = 0$ where $\Delta_1(s)$ is the determinant of the reduced block scheme obtained from the original one eliminating all the blocks touched by path \mathcal{P}_1 ;

 $G(s) = \frac{P_0}{V_a}$ has 3 poles and 0 zeros because the relative degree is r = 3; $G(s) = \frac{I_a}{V_a}$ has 3 poles and 2 zeros because the relative degree is r = 1;

• <u>Note</u>: the higher is the relative degree the more difficult is the control.

• Example 7. Let us consider the following feedback system:



• Calculate the steady-state value of the variable e(t) in the presence of the following signals: r(t) = t, $d_1(t) = 1$ and $d_2(t) = 1$.

Solution. Using the Laplace transform and the linearity property of the system one obtains:

$$E(s) = \frac{R(s) - \frac{2h}{s}D_1(s) - hD_2(s)}{1 + \frac{2h}{s(s+2)}}$$
$$= \frac{s(s+2)R(s) - 2h(s+2)D_1(s) - hs(s+2)D_2(s)}{s^2 + 2s + 2h}$$

Being $R(s) = \frac{1}{s^2}$ and $D_1(s) = D_2(s) = \frac{1}{s}$, you have that:

$$E(s) = \frac{(s+2) - 2h(s+2) - hs(s+2)}{s(s^2 + 2s + 2h)} = \frac{(s+2)(1 - 2h - hs)}{s(s^2 + 2s + 2h)}$$

Applying the final value theorem one obtains:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{1 - 2h}{h} = \frac{1}{h} - 2$$