CONTROL OF PORT HAMILTONIAN
SYSTEMS BY DISSIPATIVE DEVICES AND
ITS APPLICATION TO IMPROVE THE
SEMI-ACTIVE SUSPENSION BEHAVIOUR

Riccardo Morselli * Roberto Zanasi *

* DII, University of Modena and Reggio Emilia
Via Vignolese 905, 41100 Modena, Italy
Phone: +39 59 2056161, Fax +39 59 2056126
e-mail: riccardo.morselli@Qunimore.it

Abstract: The port Hamiltonian framework is a powerful tool for modeling a
wide class of nonlinear systems such as robots and, more generally, mechatronic
systems. A wide variety of mechatronic systems are controlled by operating
dissipative components and the standard approaches for the control of port
Hamiltonian systems are not applicable. Facing the limitation that the controlled
devices can only dissipate power, the issue is to find a proper control law to satisfy
the control requirements. This paper proposes to choose the control inputs to lead
the input power of a subsystem in oder to satisfy the requirements by controlling
the energy stored or the power dissipated in that subsystem. A slight extension
of the definition of port Hamiltonian system is proposed to allow the description
of a larger set of mechatronic systems. Although some important issues remain
open, the example of the semi-active suspension shows that some positive results
can be achieved by applying the proposed approach. Copyright © 2006 IFAC
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1. INTRODUCTION

From a mathematical perspective, the port con-
trolled Hamiltonian systems (PCH) (van der
Schaft, 2000), are natural candidates to model
many real systems, as shown in the application
examples cited in (Ortega et al., 2002). Basi-
cally, PCH are systems defined with respect to a
geometric structure capturing the basic intercon-
nection and dissipation laws, and a Hamiltonian
function given by the total stored energy of the
system.

The control of PCH is an interesting research topic
and outstanding results have already been ob-
tained. The main results presented so far consider
the possibility to operate on the power-ports of a
system in order to obtain a controlled closed-loop
system that is still a PCH with desired Hamil-
tonian function, interconnection laws and damp-
ing, see (Ortega et al., 2002) and the references
therein. Another approach is the control by inter-
connection of PCH described in (Garcia-Canseco
et al., 2005). However many mechatronic systems

are not controlled by means of the power ports
but controlled by operating dissipative compo-
nents such as variable resistors, variable dampers,
clutches, some electro-valves and more. The issue
is to find a proper control law that allows to satisfy
the control requirements facing the limitation that
the energy can only be dissipated by the controlled
devices. To the best of our knowledge the problem
of controlling a PCH by means of dissipative com-
ponents has not already been addressed.

The key idea proposed in this paper is to divide
the PCH system into two or more PCH subsys-
tems that are connected by a power preserving
connection. The control inputs are then chosen
to control the power flowing towards a certain
subsystems or to control the stored energy in that
subsystem. To this aim, a slight extension of the
definition of PCH is proposed to allow the descrip-
tion of a larger set of mechatronic systems and
to obtain an explicit representation of the power
flowing to a subsystem. Thanks to the dissipa-
tive nature of the controlled devices the passivity
properties of the given PCH system are preserved.



The semi-active vehicle suspensions (Savaresi et
al., 2003) are an example of a mechatronic system
with a controllable dissipative device. By following
the proposed approach, some of the control laws
already presented in literature for the semi-active
suspensions are derived again and an energetic
interpretation is given. Moreover a new control
with improved performances is proposed.

The paper is organized as follows: section 2 gives a
brief introduction on Hamiltonian systems and ex-
tends the definition of PCH. The proposed control
law for the dissipative components are presented
in section 3. The application example to semi-
active suspensions is described in section 4.

2. AN EXTENSION OF THE PORT
HAMILTONIAN DEFINITION

The port-Hamiltonian framework is a powerful
means to model robotic, mechatronic and dy-
namic systems. A brief recall of some definitions
written in (van der Schaft, 2000) is given herein
for reader convenience. The port-controlled Hamil-
tonian system (PCH) are systems of the form:
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One of the key feature of the PCH is the energy
perspective in modeling the physical systems. The
Hamiltonian H (z) represent the energy stored in
the system, the product y” u has the units of
power and has the physical meaning of the power
flowing through the port (u,y):
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namely the power y” v supplied to the system
is partially stored as energy and partially dissi-
pated through R. Many PCH can be obtained
connecting different subsystems by power preserv-
ing interconnections. Let (u1,y1) and (ug,y2) be
the power ports of two PCH, the general power

preserving interconnection is the following:

U1 0 A Y1 2)
[uQ] —AT 0 L/z] (

the matrix A can also be time varying and/or
state dependent. With the interconnection (2) the
power flows from one system to the other without
losses: yf w1 = y{ Ayo = y3 ATy1 = —y3 o,
namely the outcoming energy from one subsystem
is exactly the incoming energy to the other.
The PCH in (1) does not consider the possibil-
ity of external inputs that directly modify either
the dissipation matrix R(z) or the matrix J(x).
This problem was partly addressed in (Perez et
al., 2004) where a matrix J depending on exter-
nal inputs is considered. As previously described,
many mechatronic systems have dissipative com-
ponents whose behaviour depends on an exter-
nal input. To represent mechatronic systems as

a set of PCH connected by power preserving in-
terconnections, the definition (1) is not enough,
as shown in the example of Sec. 4. Some compo-
nents of mechatronic systems may show a direct
dissipation between the input u and the output
y. A resistor is simplest example. The PCH in (1)
cannot consider such behaviour since the dissipa-
tion is only related to the gradient of H(x). To
take into account these phenomena, the following
modification of (1) is proposed:
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where v is an external input vector that may
also be equal to u. The matrix Ja(z,v) models a
direct change of interconnection (example: ideal
switch). The matrix [Jo(z,v) — Ra(z,v)] has a
similar meaning as the matrix “D” of the linear
systems.This new definition (3) is similar to the
one in (Escobar et al., 2004), however in that
paper the so called throughput matrix relating u
and y was defined as a skew-symmetric matrix.
Therefore, differently from the definition of the
matrix [Jo(x,v) — Re(x,v)] in (3), the throughput
matrix is unable to describe a direct dissipation.
The extended definition (3) preserves the basic
properties of the PCHs and the energy perspec-
tive in modeling the physical systems. The inner
product y” v has still the physical meaning of
the power flowing through the port (u,y) and the
power balance in (3) is the following:

dH OHT OH
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From (4) it is straightforward to verify that (3)
satisfies the energy balance equation (EBE):

H(x(t)) — H(x(0) = / yT (ru(r)dr - D(t) (5)

where D(t) is a nonnegative function that cap-
tures the dissipation effects.

3. CONTROL BY DISSIPATIVE
COMPONENTS

Many mechatronic systems are controlled by dissi-
pative components and the inputs v in (3) are not
controlled variables, conversely the inputs u often
represent disturbances. The semi-active suspen-
sion described in the next section is a such exam-
ple: the input w is the road profile velocity &,.. Fur-
ther examples are the clutches (the torques on the
axles are not controlled inputs, only the friction
torque is controlled) and some electro-valves (the
main external inputs are usually the hydraulic
supply pressure and the reservoir pressure). If
it is not possible to modify the power flows by
the power port (u,y), the approaches (Ortega
et al., 2002) and (Garcia-Canseco et al., 2005)
cannot be used. The control requirements can be



satisfied by operating the dissipative components
only. This control problem, to the best of our
knowledge, has never been addressed for PCH
and a full result is not yet available. This paper
proposes to control the dissipative components by
taking into account the power exchanges between
subsystems. This approach is based on two steps:

1) translate the control requirements in a re-
quired energy level for a subsystem or in a
required input power to a subsystem;

2) operate the dissipative components to obtain
the desired energy level or input power.

To help the solution of the first part, the mecha-
tronic system is divided into two or more subsys-
tems of the type (1) or (3) that are connected by
a power preserving connection of the type (2). By
this way the input power and the energy stored
in each subsystem can be easily computed. The
correspondence between control requirements and
energy levels or input power is the target of future
research and it is not addressed in this paper.
Concerning the second part, the control inputs
v are chosen to control the input power or the
energy stored in a subsystem. Four control laws for
the input v are proposed. The control, to a desired
value Wy, of the input power of a subsystem is the
target of the control laws C1 and C2. The control
laws C3 and C4 are based on a desired energy level
H for the subsystem. To simplify the notation, let
d(v,z) denote the positive dissipated power:
OHT OH
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C1) Let Wy be the desired value of the input
power of a subsystem of the type (1) or (3). From
the power balance (6), the desired power Wy or
its closest possible value is obtained by choosing
the control input v as follows:

argmax(H +d) if argmax(H+d) < Wy
v: { argmin(H +d) if argmin(H+d)>Wy (7)

Wy = H+d otherwise

The first (or the second) condition means that
the desired power Wy cannot be obtained and
then one of the values of v that gives the smallest
difference is chosen. The desired value Wy is only
obtained in the third case.

C2) When it is required to minimize or maximize
the power Wy the control law (7) can be sim-
plified and the resulting new control law may be
much easier to be implemented. The minimization
(maximization) of Wy can be obtained by substi-
tuting in (7) Wy = —oo (Wy = 00). If Wy = to0
only some conditions of (7) are possible and the
control (7) simplifies as follows:

(8)

argmax(H +d(v,z)) if Wy = 400
v: .
argmin(H+d(v,z)) if Wy = —o0

As shown in the next section, this control law may
be much simpler to be implemented since only the

maximization (or minimization) of H(x)+d(v,z)
with respect to v is required.

C3) Let H, be the desired level of energy for the
considered subsystem. Let f(z) be a function of
the variable z such that f(z)z > 0 if z # 0. The
desired energy level H; can be obtained from:

Hy=—f(H(z) — Ha) 9)

where Hd is the desired value for the time-
derivative H(z). From (4) the time derivative Hy
can be obtained choosing the control v as follows:
argmax(y? u—d) if argmax(yTu—d)< Hy
v:Qargmin(y’u—d) if argmin(yTu—d) > Hy
Hy =y u—d otherwise
(10)
The first (or the second) condition means that the
desired Hd cannot be obtained and then one of
the values of v that gives the smallest difference
is chosen. The desired value Hy is only obtained
in the third case.
C4) A control law that requires less knowledge
of the system than C3 is obtained starting from
(9) and (10) and choosing the maximum or the
minimum possible values for Hy. The resulting
control is the following:

{argmax(yTud(v,x)) if H(xz) < Hy
v

o ' (11)
argmin(y” u—d(v,x)) if H(x) > Hy

As shown in the next section, this control law may
be much simpler to be implemented since only the
maximization (or minimization) of y*u—d(v,z)
with respect to v is required.

Remark 1. As shown in equations (7) and (10) it
is not ensured that the control requirements can
always be satisfied by operating on the control
input v. This is mainly due to the inputs u that
are not controlled variables and that may assume
any value while the term d(v, z) may be limited.
Remark 2. In the more general case the input v
is a vector, therefore equations (7), (8) (10) and
(11) may have more solutions that have different
components of v. If a particular system structure
is not given, it will not be possible to define a
criterion for the choice of the best solution.

4. CONTROL OF SEMI-ACTIVE
SUSPENSIONS

The semi-active suspensions are a typical example
of a mechatronic system controlled by a dissipa-
tive component. A semi active suspension system
is shown in Fig. 1 regarding a quarter-car model.
The damping b of the shock absorber is controlled
by an electro-valve. The typical control problem
is to choose the value of the desired damping by in
order to maximize the comfort for the passengers.
The ideal solution were to obtain a body (sprung
mass) speed and acceleration as close as possible
to zero to minimize the movements and the forces
perceived by the passengers. A detailed descrip-
tion of the semi-active suspensions can be found



Fig. 1. Graphical representation of a quarter-car
model with semi-active suspension.

in (Savaresi et al., 2003) and in the references
therein. This section shows how some control laws
already known for the semi-active suspensions
can be derived again by means of the proposed
approach. Moreover a new control with slightly
better performances is proposed.

The variables shown in Fig. 1 have the follow-
ing meanings: M denote the quarter-car body
mass, M; is the total unsprung mass (tire, wheel,
brakes, suspension links,...), b and by are the real
and the desired damping coefficients of the shock-
absorber, K and K, are the stiffness of the suspen-
sion spring and of the tire, respectively. Finally
rs, ¥y and x, are the vertical position of the
body mass, of the tire and of the road profile,
respectively. The PCH model of the system shown
in Fig. 1 is the following:
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The gravitational force has been compensated by
the springs pre-load and it does not compare in
the equations. The state variables s = x5 — ¢
and x4 = x; — x, represent, respectively, the
deformations of the spring and of the tire with
respect to the equilibrium length.
The variable dissipation b depends on the actuator
dynamics. The simplest actuator is usually de-
scribed by a first order linear dynamics with sat-
uration of b between b,,;, > 0 and b0z > bmin-
Let by be the desired damping, let 3 > 0 be the
bandwidth of the actuator, the simplified actuator
dynamics is the following:

] 0 if b > bpaes and by > bias
b= { 0 if b= bmin and bd S bmfm
B (bg—b) else

Remark 3. For the sake of clarity the described
suspension system is linear as in (Savaresi et
al., 2003). For a real suspension system both

Ty

K and b are nonlinear functions of some state
variables. However the results presented in the
following section hold also in the nonlinear case.

4.1 Partition of the PCH

The semi active suspension system can be par-
titioned in the following three connected PCHs
(dashed boxes of Fig. 1):

1) Subsystem 1, sprung mass PCH:

H, = lMsg'si
2
fC.S = [0] Msi's+ U (13)
[ om
Y1 = M, Dirs = Ts

2) Subsystem 2, spring-damper PCH:

1
Hy =5 K 22,

Uu2,1
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3) Subsystem 3, wheel and tire PCH:

Tst

(14)
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The three subsystems are connected in the follow-
ing power-preserving way:

uza| _ (0 1 yaal juza| _ T
uy | |—10] [y uy | |[—Kze—bist

uzal _ (0 1 ool | juzal Ty
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(16

4.2 Passive suspensions

Although the passive suspensions are not control-
lable, their behavior from a power/energy per-
spective is analyzed to get some insight about
the proposed approach. Let consider the spring-
damper subsystem 2, the stored energy is:

H,

1
and the power yJ uy = Hy + ds (b, ) results:
Yyl ug=Hy +do(b,x) =K xo is + b2, (17)

If the requirement were to dissipate as much power
as possible from the external world, the control



law C2 with Wsq = +o00 should be applied. From
(8) and (17):

b:argmax(K x4 g +03%) — ba = bmax

therefore the damping should be constant at
its maximum value and a passive suspension is
enough to meet the requirement. However it is
well known that this solution is not optimal both
for handling and for comfort.

4.8 Classic two-state sky-hook control

The target of the sky-hook control is to keep the
body vertical speed &5 and acceleration s as close
as possible to zero facing the road profile &,.. The
classic two-state “sky-hook” control law given in
the literature, see (Savaresi et al., 2003), is:

by = { bmaz if T ds >0 (18)

bmin else

Consider the subsystem 1 described by (13), the
kinetic energy of the body is Hi(#s) and it is
always positive. Let the desired energy level Hi4
be set to zero, this means zero vertical speed of
the body. By applying the control law C4, only
the second condition of (11) is possible, since for
the subsystem 1 d; (b, z) = 0, we have:

Yyl ug—dy(b,2) = —bigig—Kag ds

To minimize y{ u; —dy(b,x) as requested in (8)
it is only possible to minimize —b 4T, this is
obtained exactly by requiring the damping b, as
in the control law (18).

4.4 Acceleration-Driven-Damper control

The Acceleration-Driven-Damper (ADD) control
is proposed in (Savaresi et al., 2003) and, under
mild assumptions, it is demonstrated to be op-
timal in the sense that it minimizes the vertical
body acceleration #; when no road-preview is
available. The ADD control is defined as:

bmaa: if
ba = { bmin else

Ts Tst 2 0 (19)

This control law can be obtained in an alternative
way by means of the control law C2 previously
presented. Consider the subsystem 2 described by
(14). Let the desired power Wa4 be the following:

| +oo if yQTuQSO
W2d_{oo if y2ug >0 (20)

The incoming power is y2 uy and Wy = yQTd U2d
consequently the requirements are to keep the
incoming power as close as possible to zero: if
yd ug > 0 (yd ug < 0) the requested power Way
is the lowest (highest) possible. This control law
mimics a sort of sliding mode control of the power.
According to (8), (17) and (20) the damping
b must be chosen to maximize (or minimize)
Kzrgzg + b:'c?t, therefore the desired damping
by is set as follows:

by — {bmaz if

T
Yy u2 <0
bmin €lse (21)

This control is exactly the same as (19) since:

yg Uz = (K Tst + b'i:st) 'jcst = *Ms :b.s jfst (22)

This example and the previous show that the con-
trols C2 and C4 may be simple to be implemented
since only a partial knowledge of the system state
is required.

4.5 Power-Driven-Damper control

The control (19) may show an oscillating behavior
on by if the bandwidth ( is wide enough and
bnaz ©2+ K gt ist > 0 and bppin 72+ K Tgy Tsp <
0. This is due to the direct dependence of &5 (or
y2) on the damping b, namely if § — oo the
controlled variable would affect instantaneously
the measured variable.

It is clear from (20) (but from (19) it is not!)
that the ADD control mimics a sort of sliding
mode control of the power whose aim is to steer
the power yJ us to zero. From this observation,
an alternative strategy is obtained applying the
control law C1 with the requirement Wy; = 0.
Matching (7), (17) and (22) we obtain the new
Power-Driven-Damper (PDD) control:

bomas if Ko st +bmazi, <0
by — Jomin if Ko st +bminis, > 0
(bmax+bmzn)/2 if C.Est =0 and Tst 7é 0
—Kxg/dst otherwise
(23)

The first two equations in (23) lead to the same
behaviour as in (20). The last two equations deal
with the problem of the oscillations, the desired
damping is indeed set to obtain exactly W, =
0, namely it equals the equivalent control in a
sliding mode sense. This value belongs to the
interval [bmin , bmaz]- When &g = 0 the power
Wy = y; u2 equals the desired value Waq = 0
and the control requirement is satisfied for any
damping b. In this case the desired damping b, is
set to the average damping value during transients
(xst # 0) it is set to the minimum in steady state
(xst =g = 0)

The advantages of the proposed PDD control are
clear from the simulation results shown in the next
section. The cost is the need for the knowledge of
the spring stiffness K and for the exact control of
the damping b both required by (23).

4.6 Simulation results

The behaviour of the PDD control is compared
to the ADD control in Figs. 2, 3 and 4. Since
the ADD control is almost optimal in terms of
body acceleration minimization (maximum com-
fort) the comparison does not take into account
the other control strategies less efficient than the
ADD. This comparison can be found in (Savaresi
et al., 2003) and in (Savaresi et al., 2004). The
parameters for the simulations and the comfort
evaluation method are the same as in (Savaresi et
al., 2004).



PDD(solid-thick), ADD(dashed), Passive (solid-thin).
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Fig. 2. Approx. frequency response from the dis-
turbance x, to the acceleration &s: PDD con-
trol , ADD control and passive suspensions.

The comparison of the approximated frequency
responses is shown in Fig. 2. The lower is the
frequency response, the better is the control algo-
rithm: the ADD is slightly better in the frequency
range from 2 to 10Hz, conversely the PDD is
slightly better at low and high frequencies.

The time responses shown in Figs. 3 and 4 under-
lines the advantages of the PDD control in terms
of lower jerk both for a sinusoidal and a step road
profiles. Concerning the jerk, the improvement is
evident. This improvement is not paid in terms of
a worsening in the body acceleration, conversely
for both the time responses the acceleration be-
haviors are quite similar: the PDD is slightly bet-
ter in the step response while the ADD is slightly
better for the tone response.

5. CONCLUSIONS

The paper has addressed the problem of control-
ling port Hamiltonian systems by operating its
dissipative terms.

The key idea is to divide the Hamiltonian system
into two or more subsystems that are connected by
a power preserving connection. To this aim a slight
extension of the definition of port Hamiltonian
system has been proposed. The control inputs are
then chosen to control the stored energy or the
power dissipated of a certain subsystems.

The paper presents only some preliminary re-
sults, many problems and questions remain open,
however the semi-active suspension example has
shown that some positive results can be achieved
by applying the proposed approach.
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