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Detailed and Reduced Dynamic Models of
Passive and Active Limited-slip Car Differentials
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Passive and active limited slip differentials are used in high performance cars to optimize the torque
distribution on the driving wheels for traction maximization, driving comfort, stability and active
safety of the vehicle. In the paper, detailed and reduced dynamic models for the simulation of four
kinds of differential are presented.

The models refer to the limited slip steering differential with two clutches. The model of the
conventional differential, of the mechanical limited slip differential and of the controlled limited
slip differential can be obtained by simplification. The detailed model allows the simulation of the
internal phenomena that influence the differential dynamics. The reduced model focuses only on the
main dynamic behavior of the differential. Some simulations show the use of the reduced model to
compare the effects of the four differentials on the vehicle dynamics.
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1 Introduction

The differential (see Fig. 2) is a mechanism that allows the driving wheels
to rotate at different speeds as they follow different paths around a corner,
and yet both transmit torque to the ground. They are mounted on each car.
The role of the differential has come under much scrutiny due to its strong
influence on vehicle stability, control and traction, see [1].

The importance of the differential can be understood by studying the typical
behaviour of the tires, Fig. 1 shows the basic principles, see [2] for further
details. The dynamics of a wheel is given by:

Jww =Ty — xR,
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where w is the wheel angular velocity, J,, and R, are the wheel inertia and
rolling radius, 7, is the driving torque and F} is the longitudinal force gener-
ated by the tire contact patch. In a steady state condition the traction torque
T on a wheel corresponds to the tire longitudinal force 7,, ~ F, R, (neglecting
the rolling resistance) and the tires exhibit a small slip A defined as:

)\:Rew—vm

Vg

where v, is the longitudinal wheel speed. When the torque on the wheels
exceeds the corresponding maximum longitudinal force F),, that the tire can
transmit to the ground (i.e. 7, > FypR.), the tire starts spinning, the slip
A tends to increase, and both the longitudinal F, and the lateral F; forces
transmitted to the ground sharply decrease, see Fig. 1. While cornering, the
decrease of the lateral force Fy, due to the wheel spinning can be very dangerous
for the stability of the vehicle because a further slight increment of the car
speed leads to a strong vehicle oversteer (rear wheel drive) or understeer (front
wheel drive). Moreover, the decrease of a tire longitudinal force F, due to the
spinning reduces the car acceleration.

' N

Figure 1. Basic tire behaviour: slip and vertical load effects on longitudinal and lateral forces.

To avoid the wheel spinning during cornering, the Vehicle Dynamic Control
(VDC) and the Electronic Stability Program (ESP) systems, see [3] and [4],
operate on the wheel brake pressures and on the engine in order to reduce the
generated torque. This solution is good for safety, but it is not optimal in terms
of performances: brakes dissipate energy and the reduction of the engine torque
limits the longitudinal acceleration. Proper differentials are used to overcome
these drawbacks.
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The maximum longitudinal force F,, that a tire can transmit to the ground
is limited. During cornering, the lateral acceleration causes a load transfer from
the inner wheel to the outer wheel. Since the maximum longitudinal force F,,
of a tire increases as the vertical load N, increases (see Fig. 1), the outer wheel
can transmit more torque to the ground with respect to the inner one. This is
the basic principle to understand the differential control strategies. Note that
different torques on the driving wheels introduce a steering effect on the car,
therefore the controlled differentials can be seen as yaw control systems.

The conventional open differential delivers equal torque to each wheel, inde-
pendently of the relative speed of the two wheels. During cornering, since the
inner wheel has a lower vertical load, it starts spinning before the outer wheel.
When it happens, the car starts understeering, the engine torque must be re-
duced to stop the wheel spinning and therefore the longitudinal acceleration
is limited.

The mechanical limited-slip differential uses one or two clutches to establish
a Coulomb friction between the two differential output shafts (the two half
shafts). This friction is proportional to the total torque delivered to the differ-
ential case and it depends on the sign of the wheels relative speed; it subtracts
torque from the fastest wheel and adds the same torque to the slowest wheel.
In normal conditions the inner wheel is slower that the outer one, therefore
any acceleration produces an unpleasant understeer effect (i.e. more torque is
delivered to the inner wheel) with respect to the car equipped with the con-
ventional differential. The benefits of a mechanical limited-slip differential are
clear when the inner wheel starts spinning: its speed is greater than the speed
of the outer wheel and therefore torque is transferred from the inner to the
outer wheel. This automatically reduces the wheel spinning, and more torque
is transmitted to the wheel that has the higher vertical load improving the
acceleration performances of the car.

For the mechanical limited-slip differential, the amplitude of the friction
depends on the input torque from the propeller shaft. The electronically con-
trolled limited-slip differential (briefly electronic differential) is similar to the
mechanical one, but uses an electro-actuated wet clutch and therefore more
control flexibility is gained. Essentially, the electronic differential is activated
(i.e. friction is added) only when the inner wheel tends to spin. By this way,
the benefits of the mechanical limited-slip differential at high lateral accelera-
tion are kept, at the same time the unpleasant understeer effect at low lateral
acceleration disappears.

A further evolution is the electronically controlled “steering” differential
sketched in Fig. 2. This mechanical solution overcome the common problem
of the other differentials: it can transfer torque from the inner to the outer
wheel even if the outer wheel is faster than the inner. The electronic steering
differential has important effects on the vehicle stability thanks to its ability to
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Figure 2. Mechanical scheme of the steering differential.

steer the car by controlling the torque difference between the two half shafts.

The limited-slip differentials have strong effects on vehicle safety, stability
and performances. The development of proper control strategies requires dif-
ferential and vehicle models for the simulation of the vehicle dynamics and
for the control algorithms testing. Moreover, the ESP control system must
interact with the electronic differentials to achieve the best performances. The
development of an integrated control strategy is under investigation and differ-
ential mathematical models for simulation are essential. This paper proposes
three models of the electronically controlled steering differential with differ-
ent levels of detail for the simulation of the differential behaviour and for the
simulation of vehicle dynamics. Moreover, these models can be easily used to
simulate the dynamic behaviour of all the other kinds of differentials.

The paper is organized as follows: the mechanical description and the de-
tailed mathematical model of the steering differential are introduced in Sec. 2.
The complex detailed mathematical model is then reduced and simplified in
Sec. 3. The reduced model is used in Sec. 4 to compare in simulation the be-
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haviours of the four kinds of differentials. Finally some conclusions are drawn.

2 Steering Differential with Control Clutches

A simplified mechanical scheme of a steering differential is shown in Fig. 2.
The propeller shaft J; transmits the torque Cs from the engine (through the
gearbox) to the differential case J;. The differential case rotates around the
X — X axis and drags the planet pinions J, (for simplicity only one planet
pinion is shown in Fig. 2). The planet pinions are connected to the two half
shafts J; and Jo by means of the two sun pinions. Let’s define the following
gear ratios:

Te6
DC:_7 DT‘:_7 Dt:_a Dk:_
Ts T T3 T

When ideal gears are considered (no lash and infinite stiffness), the following
ratios between angular velocities hold:

w w1 — W2 w3 W4 Wy
D.== D, =— "=, D, == == D, =-%
Wy Wy we We we

In a steady-state condition with ideal gears and no friction losses, the case
angular velocity wy is the average of the two half shafts velocities w; and ws,
and the torque Cy = C;D, on the case is shared between the two shafts:

w] +w C CsD,
de% 01=C2=7d=T (1)

The structure described till now is the same as the conventional open dif-
ferential. The electronically controlled steering differential adds the horizontal
return shaft Jg, the two return wheels J3 and Jy, and the two clutches Kj
(between J3 and J;) and K4 (between Jy and J). Due to the gear ratios, the
following relations hold:

Let wy represents the inner wheel velocity, in normal conditions it is w; =
wy + Aw, wo = wg — Aw with Aw > 0. If Aw satisfies:

D
Aw<wd<D—t—1) = w3 > wi
k
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When the clutch K3 is slipping and w3 > w1, the friction torque K3 sgn(ws—w1)
delivers torque to the external wheel even if it is faster than the inner one,
therefore the steering differential has a wider operating region than the other
type of differentials.

To introduce the dynamic equations of a steering differential, let us define
the function y(z, g, h) as follows:

0 if  fz|<yg

h(z+g) if x<-—g

The function «y(z, g, h) is used to describe both the torsional stiffness and
the lash of a mechanical gearing. The parameter h represents the torsional
stiffness and the parameter g describes the semi-amplitude of the lash. An
ideal gearing with constant ratio has ¢ = 0 and h — oo.

Let 0; (for i =1,2,3,4,6), 04, 6, and 05 denote the angular positions of the
mechanical elements shown in Fig. 2. The proposed model of the car differential
shown in Fig. 2 is described by the following dynamic equations:

( Oi=w; (for i=1,2,3,4,6)
bi=ws br=w, O =w,
Jsws =Cg —bsws —y(0s—D:by, gs , hs)
Jiwr = C1 — by wy + Kzsgn(ws—w1) +y(0a+Dr0,—01, g1, h1)
Jawy = Cy — by wy + Kysgn(ws—w2) + (04— Dr0r—02, g2, ho)

Jag wq = (Jg + Jrg) Wa = —bg wa+

+De 705 = Deba, g » hs) = Y(0a—Dibs , g6 » ho)+ @)
~Y(0a+Dy0r =01, g1, 1) — (04— D10, —02, g, h2)
Jry wr = Dr(y(6g —02, g2, ho) —=v(04+ D0, —61, g1, h1))—b, wy
Jsws = +v(Dis—03, g3, h3) — b3ws — K3 sgn(ws—w1)
Jiwy = +7y(Dis—04, ga, ha) — byws — Kysgn(ws—ws)

Jo we = Dy, y(0a— Db , g, he) — be we+
\ _-Dt (’Y(Dt06_03a g3, h3)+7(Dt06_047 94, h4))

The linear friction b; w; can be easily substituted by a generic nonlinear fric-
tion b; (w;). The dynamic system defined by equations (2) can be simulated
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by using the block scheme shown in Fig. 3. The basic idea of this scheme is
to use the power interaction between subsystems as basic concept for model-
ing, see [5] and [6]. The dashed lines represent the power ports between the
subsystems and the inner product of the two vectorial variables involved in
each dashed line of the graph has the physical meaning of the power flowing
through the section. The black dot means a change of sign. The presence of
the integrators (integral causality) and the absence of derivators (differential
causality), see [7], allow the reliable simulation of this scheme using every com-
puter simulation. The matrices in the scheme of Fig. 3 are defined as follows:

Jy =diag{Js, J1, Jo}, Jo = diag{Juz , Jry , J3, Ja},
B1 :diag{bs, bl, bQ}, B2 :diag{bd, bT, bg, b4},
10 0 0 O (1)8 8
W,=|0-10 -10 |, W, — ,
00 —-10 -1 0-10
00 -1
D. -1 -1 0 0
0 -D,D,. 0 O
DCT‘: 0 0 0 -1 0 9 Dkt: [Dk _Dt _Dt]ﬂ
0O 0 0 0 -1

K, = dla‘g {0 ; 0,0, K3 Sgn(') , Ky Sgn(')}a
G, = diag{’Y(‘aQSahs) ’ ’Y('aglﬂhl) ) ’7('7923]7’2) ) 0 ) 0}1
G2 = dia‘g{’}/(WgGahﬁ) 3 ’Y('ag3ah3) ) ’Y('ag4ah4)} .

3 Model Reduction

The model of Fig. 3 corresponding to the system (2) requires a demanding
computational effort to be simulated for two reasons. First the gears are
usually almost ideal therefore the stiffness values hg, hi, ho, h3, hy and hg
are very high. High stiffness values involve wide torque variations for small
torsion angles, this slows down the simulations because the simulation step
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Figure 3. Scheme for the simulation of the steering differential corresponding to equations (2).

size must be reduced to achieve reliable results.

The second reason is the presence of the two terms Kj3sgn(ws — wy) and
K4 sgn(ws — we) due to the Coulomb friction. When the difference (w; — w;)
becomes zero, the term K; sgn(w; — wj) starts switching between £Kj;, and to
achieve reliable simulation results the simulation step size must be as small
as possible. The problem of the proper simulation of Coulomb friction is a
well studied subject and various solutions are present in literature. A survey
of friction models and simulation techniques concerning the Coulomb friction
is given in [8]. Some energy based accurate solutions can be found in [9]. The
solution proposed in this paper differs from the preceding thanks to a state
space transformation that allows to deal with the Coulomb friction without
the need of models switching, pre-slip velocities, hybrid resistive ports. The
simulation results are exact and the simulations only require the detection of
the zero relative velocity. Moreover, the solutions presented in [8] and [9] are
not applicable directly to the steering differential.

From a system theory point of view, the steering differential is a so called
Variable Dynamic Dimension System (see [10]). Due to strong nonlinearities
(i.e. K; sgn(w;—wj)), this kind of system changes its dynamic dimension during
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normal system operations. The variable dynamic dimension systems are quite
common in mechanical devices with Coulomb friction, such as clutches [11],
gearboxes [12], brakes and limited slip differentials. From a mathematical point
of view, the system order reduction means that some state variable derivatives
are constrained to remain zero until some dynamical conditions are satisfied.
In the steering differential, if the friction coefficient K3 (or K4) is high enough,
the two inertia J; and Js (or Jy and Jy) are constrained to rotate at the same
speed: w; = ws (or we = wy) and the dynamic dimension is reduced by 1. When
the dynamic dimension in the real system reduces, the term Kjsgn(w; — w3)
(or Kysgn(ws — wyg)) in model (2) starts switching and the computational
effort rises dramatically. This problem can be solved using twice the algorithm
presented in [10] for the two inertia pairs Jq, J3 and Jo, Jy4. Nevertheless, the
computational time remains affected by the high stiffness values.

This section presents step by step a model reduction that preserves the main
dynamic behaviours of the steering differential and reduces significantly the
simulation computational effort without affecting the reliability of the results.

First of all, since the gears are almost ideal, the lashes gs, g1, g2, 93, g4 and
ge¢ are very small and their effect can be neglected. Reducing the lashes g;, g1,
92, 93, g4 and gg to zero, the function y(z, g, h) simplifies as follows:

¥(x,0,h) = hz
and the system (2) becomes:

((Jsws = Cs —bsws — &
Jwg =C1—biwi +& + Ks Sgn(uJ3 — wl)
Jowy = Cy —bywy + & + Ky sgn(wyg — wo)
Jaz wa = Dc&s — &1 — &2 — &6 — bawy
Jrywr = Dy ({2 — &1) — brwy
Jyws = &3 — byws — Kzsgn(ws — wi)
Jywyg =& —bywy — Kysgn(wg — wo)
Jowe = Dy, &6 — Dy (&3 + &4) — b6 we (3)
£s hs (ws — D¢ wq)

& —h1(wd+D wy — wi)
£ = hy(wi— Dywy —wo)
& =hs(
€1 =hy(Dywe — wi)
| & =he(wa — D we)

Dy ws — w3)
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The system (3) can be simulated by using the block scheme of Fig. 3 with
the two matrices Gy and Go changed as follows:
G, =diag{hs, h1, ha, 0, O}, Gy = diag{he , h3, ha}.

Let us rewrite system (3) in the following compact matrix form:

Lx=Ax—-D"K; sgn(Dx) + C"u
y =Cx

where:
J,000000 00000007

0J,00000 0000000 o 0 0
00,0000 0000000 wy 10
0004000 0000000 wo 0—1
000000 0000000 g 88

1 1
0000050 0000000 b 0 0
L 000000J,, 0000000 e e |00
0000000J,000000]" wy |’ 001/
00000000%00000 &6 00
0000000 00Js0000 ‘gﬁ 88

1 3
0000000 0005000 £, 00
0000000 0000500 w3 10
0000000 00000J30 [ wy [ 0 1 ]

0000000 00000O0.J,
C w
K30 _ S B S
KS |:0K4:|’ u= Cla Y= \|wi],

02 w2
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Assuming ideal gears, the stiffness values hy, ho, h3, h4, hg and hg tend to
infinity, the last 6 equations of system (3) lead to 6 algebraic constraints:

(ws = Dowy
ws =D,w
( s cWd wd:W1+W2
wi =wg+ Dyw
1 d+ Dr wy = 1 W1 — W)
w9 = wq — Dy wy T D, 5)
wq = Dy, wg we = Bt
w3 = Dyws D
w3 = [-wd
| ws = Dyws
| W4 = w3

Counsidering the algebraic equations (5) it is possible to find a rectangular
state space transformation x = T z that reduces system (4) from the 14% to
the second order:
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wg D.DyD,(Dy, — D;) —D Dy, D, (Dy — Dy)

wi D,(2D? — 3D, Dy, + D}) D;D,(D; — Dy)

Wy DD,(Dy — D;)  —D.(2D} — 3D, Dy, + D?)

€s 0 0

&1 0 0

&2 0 0

wq| _ Dy.D,(Dy, — Dy) —Dy D, (Dy, — Dy) [21] (6)
wr| (Dy — Dy)? (Dy — Dy)? 22
€6 0 0 et
we D, (Dy — Dy) Dr(D; — Dy,)

€3 0 0

€4 0 0

w3 DtDr(-Dk - Dt) _Dt-Dr(Dk - Dt)
[ (W4 B DtDr(Dk - Dt) —DtDr(Dk - Dt) i

—— .

X

Applying the congruent state space tr
obtains the following simplified system:

T

ansformation (6) to system (4), one

Lrz=Arz - D} K, sgn(Drz)+ Clu
(7)
y :CTZ
where
Ly = TTLT = [111 112] ’ Agp = TTAT — |:a11 a12] ’
l19 199 ai2 a2
[—2D,(Dy, — D)2 0
D;r=DT = r ,
T 0 2D, (Dy, — D)2 (8)
D .DyD,(Dy, — Dy) —D.DyD,(Dy, — Dy)
Cr=CT= |D,(2D? — 3D,D; + D}) —D, Dy(Dy — Dy)
| D, Dy(Dy, — Dy) —D, (2D} — 3Dy D, + D})

Parameters [;; and a;; can be easily computed from the previously defined
matrices L, A and T. The matrices Ly and A7 are symmetric and nonsin-
gular (D; # Dy) and matrix D7 is diagonal. The transformed system (7) is
graphically described by the block scheme of Fig. 4.

The system (7) is simpler than system (4) because ideal gears have been
considered, but the computational effort still remains demanding due to the
presence of the two terms K; sgn(w; — wj). The state space transformation T
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Figure 4. Scheme for the simulation of the reduced transformed system (7)

gives to system (7) an important property that allows to solve this problem.
Since both D7 and K are diagonal, the vector D7 K sgn(D7q 2z) in system
(7) simplifies as follows:

k1
2D, (Dy — D)2 K3 sgn(Dy — D,)?
D K; sgn(Drz) = r (D t)" K3 sgn(Dy, 1)” sgn(z1) _ [k-l Sgn(zl)]
2D, (Dk - Dt)2K4 Sgn(Dk — Dt)2 sgn(zQ) ko sgn(ZQ)
K

(9)
Namely the transformation T has split the dynamic effect of the two terms
K; sgn(w; — wj) on two different state variables. Let us denote:

F
[F;]:ATerc;u (10)

Using (9) and (10), system (7) can be rewritten in the following explicit form:

o)-bplis) o

2o JigJoa | | Fo — ko sgn(z)
———

Ly

Regarding system (11), when the variable z; (i = 1,2) is zero and when some
dynamical conditions are satisfied, the function k; sgn(z;) causes a sliding mode
condition (see [13]) and the term k;sgn(z;) starts switching at infinite fre-
quency between the two values 4+k;. This condition cannot be precisely simu-
lated by computer. To cope with this problem, a proper simulation algorithm
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has been designed to achieve fast and precise simulations.

Let 7; denote the equivalent control associated to the switching term
k;sgn(z;), that is the time mean value of the term k;sgn(z;). The equiva-
lent control can be seen as the average value of the sliding variable and the
system dynamics does not change if the sliding term k; sgn(z;) is substituted
by the corresponding equivalent control ;.

When a sliding condition arises on the variable z;, the function k; sgn(z;)
holds z; = 0, therefore the corresponding equivalent control 7; can be computed
by solving (11) with 2; = 0. The sliding mode condition is maintained if the
equivalent control 7; satisfies the condition |7;| < k;. The simulation algorithm
presented in [10] can be easily adapted to system (11). For this system, only
4 different cases are possible:

1) Let z; # 0 and 23 # 0. Since the state variables are not zero, sliding mode
conditions cannot arise and the system dynamics is given (and simulated)
by (11).

2) Let z; # 0 and 29 = 0. A sliding mode can arise on variable z5. The corre-
sponding equivalent control 75 is the control necessary to hold the condition
z9 = 0, therefore it can be computed substituting ko sgn(z2) with 75 in (11)
and imposing the condition 2o = 0. The equation to be solved with respect

to the equivalent control 79 is the following:
[0]=[122] [Fl Ffl_sg;(zl)]

The equivalent control 79 necessary to hold the condition zy = 0 is then:
J12
Ty = Fy + E(Fl — k1 sgn(z1)) (12)

Since the condition |73| < ko must be satisfied, the dynamics of system (11)
when z; # 0 and 2z = 0 is given (and simulated) by:

- F1 — k‘l sgn(zl) .
1
21 LT[ F,—1 if 72| < ko
[Z' ] B (21) 13)
2 _ F1 — k‘l sgnizp .
1
L} [F2 ~ kysen(r) if || > ko
Until |rp] < ko the equivalent control is able to hold 2z = 0 and
consequently zo = 0. As soon as |1p| > ko the derivative z, # 0, then it
follows z9 # 0. The term ko sgn(7,) means that the equivalent control 75 is
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constrained between the values tk5.
3) Let z; =0 and 2 # 0. The solution is symmetric with respect to case 2).

4) Let z; = 0 and 23 = 0. The solution is similar to case 2). A sliding mode can
arise on either z; or zy or both. The two corresponding equivalent controls
71 and 7o are computed solving the system:

0 LAl —7 T =F
:Ll = 14
[0] T[F2_T2] {T2=F2 14

Since the two conditions |7;| < k; must be satisfied, the dynamics of system
(11) when z; = 0 and 25 = 0 is given (and simulated) by:

[Py — 0 .
rL% F;—:;] = |:0:| lf |7'1|§k‘1 and |7'2|§]{22

F1 —T1 1 .
_FQ — sgn(Tg)_ if |7'1| < ky and |7'2| > ko

[z:l] = - . (15)

29 Fy — k1 sgn(r)

le - Fy— 1, | if |7'1| > k1 and |7'2| < k9
L FL—Eisgn(m)] .
1
LLT _FQ — ks sgn(Tg)_ if |7’1| > k1 and |7'2| > ko

This case seems to be the most complex, but it is the less interesting from
the simulations point of view because the condition z; = zo = 0 means that
the differential does not rotate and the car is at rest.

Please note that the simplicity of the proposed algorithm is due to the
proper congruent transformation T. The steering differential model is the most
complex among the other kinds of differential. Mathematically this means that
the dynamic behaviour of all the car differentials (see [14]) can be simulated
by the steering differential model of Fig. 4. In fact, the inertias Jg, Js, J4 and
Js can be merged to represent the case inertia of a conventional, mechanical
limited-slip or electronic limited-slip differential. Moreover, thanks to the wider
operating region of the steering differential, the torque imbalance between the
two half shafts of the other differentials can be easily obtained with proper
values of the two friction coeflicients K3 and Kjy.
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4 Simulation Results and Comparisons

The simulations described in this section refer to a car cornering a 10 m con-
stant radius left curve at constant longitudinal acceleration a; = 0.3g. In
the sequel the behaviours of the four kinds of differential are compared using
the model (7). Fig. 5 shows the vertical loads and the lateral acceleration of
the car along the corner. The tires are described by Pacejka formula [2] with
parameters corresponding to a commercial tire, see Fig. 6.

Vertical load: inner(dashed), outer(solid)

5000 -
4500
4000
— ' 3500
—— 3000
2500
2000
1500 T~

t [s]

0 I I I I

0 0.5 1 15 2 25
t [s]
Figure 5. Vertical load and lateral acceleration for a 10m radius curve at longitudinal acceleration
az = 0.3g.
Longitudinal force [N] Lateral force [N]
5000 5000
0 0
-5000 -5000
-10 -10
0 1
0
‘ 0 -1 Qlip A _ 10 -1 Qlip A
Slip angle [deg] Slip angle [deg]

Figure 6. Tire characteristics at constant vertical load (4900N) by Pacejka formula.
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The torques delivered to the two half shafts and the wheel speeds when the
conventional differential is used are shown in Fig. 7. For ¢ < 1.8s the speed
and the lateral acceleration are low, both driving wheels well adhere to the
road surface and the outer wheel rotates at an higher speed than the inner
one. This is the normal driving condition. For ¢ > 1.8s the vertical load on
the inner wheel becomes low enough to cause the inner wheel spinning. This
spinning is due to the fact that the torque on the two half shafts is the same.

The mechanical limited-slip differential avoids the inner wheel spinning be-
cause for £ > 1.8 s more torque is delivered to the outer wheel, see Fig. 8. The
two wheel speeds are equal because the differential is locked due to the total
torque delivered to the differential case. The drawback is that for low lateral
acceleration the car has a tendency for understeering (with respect to the car
equipped with the conventional differential) because the inner wheel gets more
torque.

The understeer drawback is solved with the electronic limited-slip differential
as shown in Fig. 9. The differential is locked only for ¢ > 1.8s, as soon as
the inner wheel speed becomes greater than the outer one. For low lateral
acceleration the behaviour is the same as the conventional differential.

Finally, Fig. 10 underlines the capability of the electronically controlled
steering differential to deliver the desired torque on the two wheels when
condition (1) is satisfied. In the simulation of Fig. 10, the torque difference
between the two wheels follows the lateral load transfer.

Axis torques: inner(dashed), outer(solid)

2000 -

.g. 1500

.E. 1000 f
500 - e

L L L L

0 0.5 1 15 2 25

t [s]
Wheels speed: inner(dashed), outer(solid)

t [s]

Figure 7. Axis torques and wheels speed with the conventional differential.
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Axis torques: inner(dashed), outer(solid)

2000

0 0.5

t [s]
Wheels speed: inner(dashed), outer(solid)

0 I I I I
0 0.5 t [S] 15 2 25

Figure 8. Axis torques and wheels speed with the mechanical limited-slip differential.
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2000
— 1500~

—— 1000

500 =

15 2 25
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Wheels speed: inner(dashed), outer(solid)

15 2 25

t[s]
Figure 9. Axis torques and wheels speed with the electronic limited-slip differential.

5 Conclusions

A detailed dynamic model of an electronically controlled steering differential

has been proposed. To obtain faster and still reliable simulations, reduced dy-
namic models have been obtained by a proper state-space transformation and
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Axis torques: inner(dashed), outer(solid)

2000

15 2 25

t [s]
Wheels speed: inner(dashed), outer(solid)

15 2 25

t [s]

Figure 10. Axis torques and wheels speed with the electronic steering differential.

simplification of the detailed model. The steering differential models allow the
simulation of the dynamical behaviour of the most common car differentials.
The proposed reduced model has been used to compare the effects of four
kinds of differentials on the vehicle dynamics.
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