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Abstract - Static and Coulomb friction are extensively used in automotive mechani-
cal systems to control the synchronization between two shafts or two axles. Clutches,
gearboxes, limited-slip differentials and brakes are some examples.

This paper proposes a method for the efficient simulation of a wide class of auto-
motive mechanical systems with static and Coulomb friction phenomena. The modeling
approach is based on the port-Hamiltonian systems and the computation of the friction
forces requires only the zero crossing detection. A slight approximation allows faster and
sufficiently accurate simulations even without an accurate zero crossing detection.

The proposed approach have been used to simulate the behavior of a complex gearbox
provided by some high level farm tractors.
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1 Introduction

Static and Coulomb friction are common phenomena in several automotive mechanical
systems. The static and Coulomb friction forces are usually considered as undesired
dissipative phenomena in mechanical systems. However, the static and Coulomb friction
are widely used in automotive mechanical systems to control the synchronization between
two shafts or two axles. The simplest example is given by the clutch (see Fig. 1), this
example gives some insight about the issues of modeling and simulating the systems with
static and Coulomb friction. Several other examples are available and will be introduced
soon. When the clutch is slipping, the two axles J; and .J, move almost independently
(one respect to the other) under the action of the torques 7 and 75, and the Coulomb
friction 7.5 = ko sign(w; — ws) is exchanged between them. The Coulomb friction aims
to reduce the relative speed w; — ws between the two axles:

Jl 02)1 = T1 —Tef =T1 — kLQ Sign(w1 — UJQ)
J2 CZ)Q = ch — Ty = kl’g sign(wl — WQ) — T9

When the clutch is engaged, the two axles J; and J; rotate together and the relative
speed w; — wq is zero. In this case the two axles are kept together thanks to the static
friction due to the clutch. The torque A, » necessary to keep the two axles rotating together

Jiyw, = 11— )\1,2
Jywy = )\1,2 — T2
w1 = Wr

can be computed by imposing that the derivative of the relative speed is equal to zero

when w; = ws: P

. . 2T1 172

wp —wy =10 = )\1’2:7{]_'_{]
1 2

The static friction 7,; aims to keep the two axles together, but it must be lower than the
static friction maximum amplitude K; o > 0, then:

A2 if Ao < Ko
Tsf = . .
K, 9sign(A12) otherwise
When the relative speed is zero the dynamics of the clutch system is:

Jiwg = Ty — Tsf
Jows = Tsf — T2

If |A12] < Ky and wy — wy = 0, the dynamics of the clutch system can be described by
a simpler first order model:

(J1+J2)CZ)1 = T1 — T2
Wy = Wy

(1)



The dynamics of the clutch system shown in Fig. 1 can be finally expressed by:
Jiw, = 71— 1
Jows = p1p— T
kigsign(w) —we) if w; —we #0

M2 = A2 if Mol < Kjp and wy —ws =0

K1’2 sign()\m) if |)\1’2| > K1’2 and w; —ws =0

A\ . J27'1+J1T2
b Ji+ Js

where k5 is the amplitude of the Coulomb friction and K; 5 denotes the static friction
maximum amplitude. Usually K;2 > ki and both depend on the external normal force
that compresses the clutch disks. Moreover, k2 may be dependent on the relative speed
(the Stribeck effect, see [Armstrong-Hélouvry et al. 1994]).

w, w, w,=Ww,
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Figure 1: Description of the two operating states of a dry clutch.

The static and Coulomb Friction force p; 2 aims to reduce the relative speed w; — wo
(Coulomb friction) or to keep the two axles at the same angular speed when w; = wy
(static friction). For this reason the static and Coulomb friction are widely used in the
automotive mechanical systems to control the synchronization between two shafts or two
axles by means of clutches or similar devices. Here is a brief list of applications coming
from different car industries and already available at least on known prototypes. The dry
clutch is used on almost all commercial cars and it has been just described. The dual
clutch transmission system works in a similar way by using two clutches in order to avoid
the torque interruption during the gear shift. The Coulomb friction is also used within
the synchronizers of a traditional gearbox to synchronize the speeds of the primary and
the propeller shafts to allow the engagement of a new gear. High-level farm tractors are
equipped with the Powershift gearbox, its main feature is to allow a full automatic gear
shift without traction torque interruption. It is briefly described in Section 5, in this
case the friction forces are used to synchronize and to keep engaged the gears. Several
examples of the use of clutches (and therefore friction) within automotive transmissions
can be found in [Jurghen 2000]. The limited slip differentials [Morselli et al. 2005] allow
to modify the torque distribution on the driving wheels, its important effects on the



vehicle dynamics are well known [Wright 2000]. Finally, the drum and the disk braking
systems operate by using the Coulomb friction.

The correct and fast simulation of the clutch system (2) and, more generally, of
systems with static and Coulomb friction is a well known issue. The problem is essentially
the accurate simulation and computation of the term (5 in (2) for each clutch in the
system. The simplest simulation models do not compute the term Ao in (2) and
is given by the sign function only. When the difference (w; — ws) becomes zero, the
term k; o sign(w; — wsy) starts switching between %k, 9, and to achieve reliable simulation
results the simulation step size must be as small as possible (the simulation gets stuck).
The problem of the proper simulation of Coulomb friction is a well studied subject and
various solutions are proposed in literature. A survey of friction models and simulation
techniques concerning the Coulomb friction is given in [Armstrong-Hélouvry et al. 1994].
Some energy based accurate solutions can be found in [Breedveld 2000].

From a system theory point of view, a system with static and Coulomb friction is a so
called Variable Dynamic Dimension System (VDDS) (see [Zanasi et al. 2001]). Due to
strong nonlinearities (i.e. the sign function), a system belongings to this class changes its
dynamic dimension (i.e. system order) during normal operations. From a mathematical
point of view, the system order reduction means that some state variable derivatives are
constrained to remain zero until some dynamical conditions are satisfied. For the clutch if
|A12] < K the two axles J; and .Jy are constrained to rotate at the same speed: wy = wy
and the dynamic dimension is reduced by 1. This condition corresponds to the model
(1). The hybrid system approach [v.d.Schaft and Schumacher 2000] essentially consists
in commuting between all the possible sub-models. This approach can be followed for
systems with relative small complexity as the clutch [Garofalo et al. 2001}, but it is not
suitable when the number of sub-models is high, as for the system described in Section 5.

Concerning the automotive mechanical systems, following the concept of VDDS
and by using a proper state space congruent transformation it is possible to obtain
a n dimensional state vector whose first variable represents the main dynamic of the
system (i.e. when all the clutches are fully engaged), the remaining variables take into
account the dynamics of the relative speeds between the axles when the corresponding
clutches are slipping. By this way, detecting the zero crossing of the relative speeds,
it is possible to simulate accurately many automotive systems with clutches: when a
clutch is fully engaged, the corresponding state variable is kept to zero. This solution
has been successfully proposed for the clutch with torque damper [Zanasi et al. 2001],
for the gearbox [Zanasi et al. 2002] and for the controlled limited-slip differentials
[Zanasi et al. 2003] and [Morselli et al. 2005]. These solutions differ from the preceding
ones thanks to the state space transformation that allows to deal with the Coulomb
friction without the need of models switching, pre-slip velocities or hybrid resistive ports.
The simulation results are exact and the simulations only require the detection of the zero
relative velocities. Moreover, the solutions presented in [Armstrong-Hélouvry et al. 1994]
and [Breedveld 2000] are not applicable directly to some automotive mechanical systems.
However these solutions are suited for single mechanical systems since the state trans-
formations depend on the mechanical framework and differ from one system to another,
moreover this way is not applicable to the Powershift gearbox presented in Section 5.



The solution proposed in this paper requires the same computational effort than the
previous (zero crossing detection, same number of integrators in the model, computation
of the friction forces), however it is applicable to a wide class of automotive systems,
especially all the systems previously mentioned. The proposed approach is based on
a port-Hamiltonian modeling of the mechanical system and on the computation of the
static friction forces or torques as they were constraint forces or torques. The proposed
approach ensures sufficiently accurate results for most applications even if the zero
crossing detection is not exact.

The paper is organized as follows. The Section 2 gives a brief introduction on port-
Hamiltonian systems. The class of automotive systems considered in the paper is de-
scribed by means of the port-Hamiltonian framework in Section 3. The computation of
the static and Coulomb friction forces and the simulation of the models is described in
Section 4. Finally, Section 5 presents some simulation results referred to the application
of the proposed approach to the Powershift gearbox.

2 A Brief Introduction on Port-Hamiltonian Systems

The hamiltonian framework is a powerful means to model dynamic systems. A
brief recall of the definitions given in [v.d.Schaft and Maschke 1994] and in in
[v.d.Schaft and Maschke 1994] and in [v.d.Schaft 2000] is given herein for reader con-
venience.

The standard Euler-Lagrange equations are given as:

d (0L, . oL, .

o (8—q(q,Q)> ~ g @ =" (3)
where ¢ = (q1,...,q,)T are generalized configuration coordinates for the system with n
degrees of freedom, ¢ = (¢y,--.,q,)" are the generalized velocities and 7 = (7, ...,7,)7 is

the vector of the generalized forces acting on the system. The Lagrangian L(q,§) equals
the difference between the kinetic energy K(q, ¢) and the potential energy V (q):

L(g,4) = K(q,4) — V(q)

The partial derivatives 57 and ‘Z—s are column vector. The Lagrangian function L(g, ¢) in
standard mechanical systems is of the form:

L4.4) = 5" M(a) 4~ V(a) @

where the n X n inertia matrix M(q) (generalized mass) is symmetric and positive def-
inite for all g. The vector of generalized momenta p = (p1,...,p,)T is defined for any

Lagrangian as:
UL
94
For a standard mechanical systems with Lagrangian (4), the generalized momenta are of
the form:

p=Mi(q)q (5)
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By using the state vector (qi, ..., qn,P1,---,pn)" the n second-order equations (3) trans-
forms into a 2n first-order equations called Hamiltonian equations of motion:

OH

q = a—p(q,p)
. oH (6)
p = —a—q(q,p)+7

where the Hamiltonian H(q,p) is the total energy of the system:

H(q,p) = K(q,p) +V(q)

System (6) is an example of Hamiltonian system which more generally is given in the
following form:

OH

¢ = a—p(q,p)
p = —%—Z(q,pHB(q)u (7)

y = BT(q)%—g(q,p)zBT(Q)d

where B(q) € R™™ is the input force matrix, B(q)u denotes the generalized forces
resulting from the control inputs u € R™ and y € R™ are the outputs. The power flowing

into the system is: .
——(a(®),p(t)) = u" () y(¢) (8)

therefore the pair (u,y) represents a power-port between the Hamiltonian system and the
external world.

The Hamiltonian framework is suitable to compute and include classical constraints
expressed in local coordinates as:

AT(g)¢=0 (9)
The Hamiltonian system (7) with classical constraints takes the form:
. OH
q9 = a—p(Q;p)
0H
) = ———(¢,p) +B(q)u+ A(g) A
P oy \©P) +BJ) () (10)
OH
= BT(¢)== =BT (¢) g
Y (9)%, (@ P) (4) ¢
0 = A'(g)q

where A(q) A denotes the constraint forces. Vector A can be usually computed by dif-
ferentiating the constraints (9) as described in [v.d.Schaft and Maschke 1994]. Note that
the constraint forces do not dissipate nor generate energy in the system, therefore the
energy balance is still the same as in (8).



3 Model of the mechanical system

The class of automotive mechanical systems considered in this paper consists in n axles
connected by gears and clutches. A typical example is the gearbox shown in Fig. 3 and
described in Section 5. All the mechanical system previously cited belong to this class.
The generalized positions are the angular positions ; for « = 1...n, the generalized
momenta are p; = J; HZ = J;w; for = 1...n, where J; denotes the axles inertia and w;

is the corresponding angular velocity. Let p = [p1,...,pn]t and w = [wy,...,w,]T. The
Hamiltonian is then given by the sum of the kinetic energy of all the axles:
1 1
H(p)zipTMflp:§wTMW:H(w) (11)
where M is the constant diagonal inertia matrix with elements Jy,..., J,.

Each gear couples the velocity of two axles and can have a clutch to force the syn-
chronization and the full engagement of the gear. Each clutch works on the relative speed
imposed by the gear. All the gears ratios can be described by a matrix R € R9*" with
the following framework:

ra T2 0 ... 0 0
re1 T2 0 ... 0 0
R 0 732 T32 0 0 (12)
0 0 0 ... Tg—ip—1 Tg—in
| 0 0 0 ... 7Tgna Ton |

Each row R; of matrix R represents a gear, it has two and only two non zero terms that
represent the mean radius of the two disks coupled by the gear, see Fig. 3. All the gear
ratios are different, therefore the rows of R taken two by two are not proportional. When
the i'" gear is fully engaged, the constraint R;w = 0 is satisfied. For a direct gear both
non zero terms in the corresponding row are positive, therefore the angular velocities of
the two axles have opposite sign when the gear is engaged. For a reverse gear the second
non zero term in the corresponding row is negative.

Let p = [y, ..., 1y]" denote the tangential forces (to be computed) exchanged within
the gears. The analytical description of the class of automotive systems considered in this
paper is given by the following Hamiltonian system:

. oH
9 = o = Mil =
o (p) p=w
p = Mw=B@)7+R"p
(13)
— B0 () =B ()«

0 = Ruw

where § = [0y, ...,0,] is the vector of the peripheral relative speeds across the gear wheels,

if 0; is kept to zero the clutch 7 is engaged and therefore also the gear 7 is engaged. The
power-port (7,y) allows to connect the system (13) to other mechanical systems (i.e. the
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engine, the wheels,...) or to include viscous friction forces or other loads. The static and
Coulomb friction forces are gathered in the force vector p(d, 7). The elements of matrix
R are linear radii therefore ¢ represents linear speeds and consequently p is a vector of
forces. These friction forces can be real forces or the equivalent effect due to friction
torques, as usually happens for the clutches (see also the example in Section 5). Another
choice is possible with the same analytical results: if the two non zero terms of each row
of R were 1 and the gear ratio then p would be the vector of the friction torques and ¢
would represent the angular relative speeds.

—B(®) I el R ek
N 1] |
B LS ] |
. R 1 u(6,7)
| v i
! T | | i :
T BOTT TR T

Figure 2: Power-oriented scheme for the simulation of system (13).

The dynamic system defined by equations (13) can be simulated by using the block
scheme shown in Fig. 2. The basic idea of this scheme is to use the power interac-
tion between subsystems as basic concept for modeling, see [Karnopp et al. 2000] and
[Zanasi 1991]. The dashed lines represent the power ports between the subsystems and
the inner product of the two vectorial variables involved in each dashed line of the graph
has the physical meaning of the power flowing through the section. The symbol ) means
the sum of the input variables. The presence of the integrators (integral causality) and
the absence of derivators (differential causality), see [Breedveld 2004], allow the reliable
simulation of this scheme using every computer simulation. The key issue is the computa-
tion of the (equivalent) friction forces p in order to allow the simulation of both slipping
and engaged clutches without switching between different models. Unfortunately the fric-
tion forces u(d,7) depend on both w and 7 so the matrix R and the pair (7x,w) define a
dissipative port modulated by 7 or an hybrid resistive port as defined in [Breedveld 2000].

4 Computation of the static and Coulomb friction

Let k(Fn,0) = [k1(Fn1,61), .., kyo(Fng,d,)]" denote the vector of the amplitudes of the
Coulomb friction of all the clutches, all the components of k are positive or zero. The am-
plitude k; mainly depends on the normal force Fly; that compresses the clutch disks and
may depend on the disks relative speed §; (Stribeck effect). Also thermal effects can be eas-
ily taken into account. Let k(Fy,d) = diag[ki(Fn1,01), ..., kg(Fng,4)] be the diagonal
matrix with elements kl(FNla (51) . kg(FNga (Sg) Let K(FN) = [Kl (FNl)a e, Kg(FNg)]T
denote the vector of the non negative amplitudes of the static friction, it is assumed that
Ki(Fy;) > ki(Fni,0). Let K(Fy) = diag [Ki(Fn1), ..., K4(Fng)] be the diagonal matrix
with the amplitudes of the static friction.



Let v denote the set of indexes j that correspond to K; > 0 and zero relative speeds
;. Let o denote the set of remaining indexes ¢ that correspond to the non zero relative
speeds 6; or to zero relative speed with K; = 0:

The two sets are complementary: cNv =@ and cUr = {1,...,¢}. Let R, and R, denote
the matrix composed by the rows of R corresponding to the set v and o respectively.
Finally, let w, [wy, fy,...] denote the components of the vector w [w, p,...] corresponding
to the set v [0, v,...]. Following these definitions 6, = R,w and 6, = R, w = 0.

The computation of the Coulomb friction forces pu, corresponding to the slipping
clutches (non zero relative speeds) is straightforward:

o = —Kks(Fio, 05) sign(dy) (15)

indeed the power flowing through the power-port (u,d) or (7r,w) due to (15) is given by:

wl'rp =61 e = =6 ko (Fng, 65)sign(6,) = —|05|" ko(Fng, 05) <0
therefore the Coulomb friction forces (15) dissipate the kinetic energy of the axles (|d,|
is intended as the vector of the absolute values of the components and not the norm of
the vector d,). If 7 = 0, the relative speed §; for i € o tends to zero if k; > 0 (the axles
tend to be synchronized).

The computation of the static friction forces corresponding to the (at least temporarily)
engaged clutches (zero relative speeds with non zero static friction amplitude K) is more
involved. Unfortunately their values depend also on 7 and on u,. The static friction
forces aim to keep at zero the relative speeds, therefore they can be seen as constraint
forces between the axles than aim to keep the constraint R, w = 0. Differentiating this
constraint, it is possible to find the virtual forces A that allow to satisfy the constraint:

R,0=RM '"BO)7+R.p,] +R,M'RIA=0 (16)

This equation can be solved for A if det(R, M ! RI) = 0. Since M ! is positive defined,
this condition is satisfied only if R, is a full rank matrix. Taking into account the
properties of the matrix R,, the following cases are possible (see also the example in
Section 5):

1) R, is a full rank matrix with at most n — 1 rows. The constraint forces A can be
computed form (16). The number of constraints is lower than the system dimension,
therefore the constraint R, w = 0 allows solutions with non zero speeds. If R, has
exactly n — 1 rows and if the static friction was given by A, the system has only one
degree of freedom and all the axles are constrained to rotate with constant speed
ratios.

2) R, is a full rank n x n matrix. The constraint R, w = 0 allows only the trivial
solution w = 0. If the static friction was given by A computed form (16), the system
does not have any degree of freedom an the axles are all stuck.



3) R, is not a full rank matrix. There are infinite solutions for A in (16) and the system
may be over constrained with two or more axles stuck together.

From the application point of view only cases 1 and 2 are interesting therefore, from now
on, we assume that R, is a full rank matrix. The condition 3 is easily avoided by a proper
control of the clutches. Computing A from (16):

A=—-(R,M'R))T'R, M [B() T +RE 1] (17)

If the virtual constraint forces A satisfy || < K,(Fy,) (where |\| means the absolute
value of each component and |\ < K,(Fy,) is evaluated component by component),
the static friction amplitude necessary to keep engaged the clutches is lower than the
maximum amplitude K, (Fly,) therefore the static friction is exactly equal to A and the
dynamics of the system is given by (13) where the second equation becomes:

p=BO)T+R p, + RN

If the condition |A| < K, (Fy,) is not satisfied for some component of A, the computation
of the static friction amplitude becomes more complex. Let v, and v, be a partition of
the set v such that v, Uv, = v and v, N v, = (. This partition corresponds to a partition
of the rows of the matrix R, [vector A\, K,,...] into two matrices R, [Ac, Kye,...] and R,
[As, Kye,...]- Using the new symbols the dynamics of the system is given by (13) where
the second equation becomes:

p=Mw=B(O)7+RI p, +RT A\ +RT )\,

where p, is given by (15). The forces A have been split in two: A, and A;. Vector A,
represents the constraint forces that do not exceed the maximum static friction amplitude,
the forces Ay denote the constraint forces that assume the maximum (or minimum) static
friction amplitude.

The partitions v, and v, and the two set of friction forces A\, and A\, can be computed
by solving the following system:

A = —(R,eM'RT)"'R,.M~![B() 7+ RZ y1, + R7, )\,
Ae| < Ko

As = K,sign (—(R,, M™'R%)"'R,, M~ [B(6) 7 + R 11, + R7. \])
K,s < |(R,,MTRL)'R,, M~ [B(0) 7+ RL yi, + RY, A

(18)

The inequalities are to be considered component by component. The first equation is
exactly similar to (16), it computes the static friction forces able to keep the relative
speeds 0,. equal to zero, the amplitude of these forces must be lower than the maximum
static friction amplitude K. (first inequality). The argument of the sign function in the
third equation gives the forces necessary to keep the relative speeds d,s equal to zero, these
constraint forces exceed the maximum amplitude (last inequality) and therefore they are
saturated by the sign function to obtain the static friction forces.

Unfortunately the solution of (18) can be obtained by a trial and error procedure that
tries all the possible solutions. Moreover in the general case it is not ensured that one
and only one solution exists as described in [Armstrong-Hélouvry et al. 1994]. However
from an application perspective the problem is much more simple. For the automotive
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mechanical systems considered in this paper it is unlikely that two clutches reach the
maximum static friction amplitude exactly at the same time instant, this is even less
probable for more than two clutches. As shown later, the solution of (18) when only one
constraint exceeds the maximum static friction is quite simple, therefore solving (18)
requires a time consuming computation rarely.

By decomposing the friction forces p in (13) into the Coulomb friction forces ., the
non-saturated static friction forces \,. and the saturated static friction forces A 4, the
dynamics of the system (13) is described by:

f = w

Mo = B(0)7+R] py + Rl A +RI A
y = BT(O)w 1)
0 = Ruw

To simulate the dynamics of the system (19), with the hypothesis of an unique solution
of (18), the proposed procedure is the following:

1) Check the set of zero relative speeds (zero crossing detection). Compute the two
sets o and v according to (14).

2) Compute the Coulomb friction forces i, by (15).

3) Compute the virtual constraints A by (17) with u, given by (15). If || < K, (Fny)
then A\ = A\, v. = v, vs = () and Ay = () is a solution of (18). The computation of
the static friction forces is completed and system (19) is simulated with A\, = A and
As = 0.

4) If only one component of A exceeds the maximum static friction amplitude, let i € v
be the corresponding index of the component that exceeds the constraint, let X be the
component that exceeds the maximum static friction amplitude: [A| > K;. Compute
A. from the first equation of (18) with v, = {i}, v. = v — {i}, Ay = K,,sign(\), s
given by (15). If |\.| < K,. the solution of (18) for A, and A, is found. Namely the
exceeding constraint is saturated and the remaining are computed again: if they

satisfy the boundary the solution of (18) is found.

5) More than one component of A exceed the maximum amplitude or the previous step
did not find an immediate solution. In this case, the solution of (18) have to be
found by a trial and error procedure that ends as soon as a solution is found.

This procedure checks first if the most common case happens and therefore the computa-
tionally demanding solution of (18) is not necessary in most of the cases. For this reason
the proposed solution seems to be quite efficient.

If the hypothesis of an unique solution of (18) is not likely, the solution(s) of (18)
must be found at each simulation step. If no solution is found or if more than one
solution are found, it is necessary to understand by a deep analysis of the mechanical
behaviour which are the right values of the friction forces, the answer to this ques-
tion depends strongly on the features of the system and varies from one system to another.

11



It is interesting to note some robustness properties of the proposed approach. If the
zero relative speeds are not accurately detected (namely |§,| < ¢ is considered to be
zero) the computation of the friction forces by (18) ensures d,. = 0 anyway, therefore
the relative speeds of the engaged clutches will be kept bounded: [6,.] < e. If also the
friction forces are not computed with sufficient precision it will be 51/(; ~ (0 so a slow drift
in the relative speeds appears. In this case the solution can be considered sufficiently
accurate for most applications, moreover faster simulations are obtained if a precise zero
crossing detection is not performed. This idea is closely related to the approach proposed
in [Karnopp 1985]. Additional linear friction forces can be added to force 6,. to zero.

5 Powershift gearbox example

clutch clutch clutch
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Figure 3: Mechanical scheme of the Powershift gearbox.

The Powershift gearbox is a feature of high level farm tractors. Its main feature is
the capability to shift the gear ratio without torque interruption, an important advantage
in agricultural activities. The framework of the Powershift gearbox is sketched in Fig. 3,
it is similar to the automatic transmission of some cars, see [Jurghen 2000]. The engine
flywheel is connected to the axle .J;, the two gear wheels with radius 7, ; and 74, rotate
together with the axle J;. The gear wheels 71 ; and 75 drive the two gear wheels r; » and
19,9 respectively. If the clutch 1 is engaged (as shown in Fig. 3) the axle J; is constrained
to rotate at the same angular speed as the gear wheel 75, by this way the two angular
speeds w; and wy are constrained to rotate together with ratio —ry/ry o

11w + T2 We = 0 = Wy = —
1,2

This concept can be repeated for all the gear wheel pairs. In Fig. 3 the clutches 1, 4, 8
are engaged, consequently the overall gear ratio from w; to wy is given by:

1,1 W1 + riaWws = 0 r r r
8,3 T42 T1,1
ryowy +ryzwy = 0 = Wy = B w1 (20)
_ 84 T4,3 T12
78,3 W3 + rgaws = 0
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By changing the set of engaged clutches it is possible to change the static ratio between
the velocities of the input shaft J; and the output shaft .J,. The number of possible gear
ratios is 2+ 3 -3 = 18. The gear shift is executed disengaging some clutches and engaging
some other new clutches. The simplest gear shift requires only a single swap (one clutch
is engaged and one other is disengaged), the most demanding requires a triple swap. The
control target is to smoothly shift the gear ratio while maintaining constant speed on the
wheels or constant supplied torque by the engine.

Clutch
Disks

Jj

1 1

1

Pressure : i

Plate —, ! :

1 1

[ R—— |
Clutch A!
|
1

1

1
Chamber Nl B

1

:

Figure 4: Simplified mechanical scheme of a wet clutch for a Powershift gearbox.

A simplified scheme of a clutch is shown in Fig. 4. By using an electrovalve it is possible
to control the pressure P inside the clutch chamber and then the static and Coulomb
friction amplitudes. For a detailed description please refer to [Morselli et al. 2003]. The
issue is to find the proper pressure profiles inside the controlled clutches to obtain smooth
gear shifts that satisfy the control target. The pressure P; within the 7% clutch determines
the force Fy; that presses the clutch disks. The friction amplitudes k; and K; to be used
in the model (13) are given by:

K; = Fy;nsine @ ki = FniNeiNei @
i C,i
where 7, ; is the static friction coefficient, 7., is the Coulomb friction coefficient, 7, ; is
the clutch mean radius, n.; is the number of friction surfaces and r.; is the radius of the
gear connected to the clutch. The simulations have been performed with n,; = 7.,.

The simulation of the Powershift system is essential to develop and to verify by simu-
lation the control strategies for the pressure profiles in order to obtain the control target.
Moreover, a model of the system can be used to test the control software by hardware in
the loop (HIL) experiments. To allow this kind of experiments, the model used for the
simulations must be accurate but not computationally demanding.

The Powershift gearbox can also be seen as an hybrid system. It has 18 discrete states
(all the possible gear ratios) and n(n — 1)/2 = 153 possible transitions (it is possible to
shift from one gear to any other one). The discrete states are quite simple, the tough
problem is the management of all the possible transitions, this becomes even worse if
the additional 6 reverse gears are taken into account. These arguments show that the
hybrid approach is not suitable for the simulation of this system especially regarding HIL
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experiments.

Following the proposed approach, the Hamiltonian of the Powershift gearbox is:

Jo 0 0 0 w1

1 1 0 JQ 0 0 (%))
H=-w'Mw=~
w w 5 [w1 wo w3 wy] 0 0 J 0 s

2
0 0 0 Jy Wy

The inertia J; includes also the inertia of the wheel gears that rotate always together with
the i-axle. The matrix B is a 4" order identity matrix. The torques 7 are given by:

™ by 0 0 0 Wy
oo 0 by 0 0 W
“lo | Tlo 0 b o0 ws
TI, 0 0 0 by W4

where 7, is the engine torque, 7, is the load torque and b; are the viscous friction co-
efficients. The torques 7); and 7;, and the coefficients b; will be kept constant in the
proposed simulations. For simplicity, the static and Coulomb friction amplitudes K and
k are supposed to depend only on the normal force and the case K =k (1,; = 7.,;) will
be considered.

The matrix R takes the form:

T T2 0 0 1 3 00
ro1 T2 0 0 1200
0 732 133 O 01 40
R - 0 742 143 O _ 0130
0 752 153 O 01 20
0 T63 T64 0 01 4
0 T73 T74 0 01 2
| 0 rs3 Tsa | | 00 1 1]

For industrial reasons the numerical values are not referred to the real system.
Let’s first analyze the meaning of the three cases described in Section 4 regarding the
rank of the matrix R, for the considered Powershif gearbox.

1) R, is a full rank matrix with at most n — 1 rows. Let v = {1,4, 8}, the constraint
forces A can be computed form (16) and matrix R,, has exactly 3 =n — 1 rows. If
K, is high enough, the clutches 1,4,8 are engaged, the system has only one degree
of freedom and all the axles are constrained to rotate with constant speed ratios as
computed in (20). This condition is shown in Fig. 3 and corresponds to a fixed gear
ratio between the input axle and the output axle (normal operating condition).

2) R, is a full rank n x n matrix. Let v = {1,2,4, 8}, the constraint R, w = 0 allows
only the trivial solution w = 0. If K, is high enough, the system does not have any
degree of freedom an the axles are all stuck. Indeed, the contemporary engagement
of the clutches 1 and 2 forces the axles .J; and J, to stuck at zero speed, then the
engaged clutches 3 and 4 constraint both the axles J; and J; at zero speed.
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3) R, is not a full rank matrix. Let v = {6,7,8} and let K, high enough. The two
axles J3 and J; are stuck together, but there exist infinite solutions for A in (16)
and the system is over constrained, indeed only two engaged clutches between J3
and .J; are sufficient to ensure that J; and .J; are stuck together. This condition is
avoided by operating at most only two clutches at a time between each couple of
axles.

Some simulation results regarding the Powershift gearbox are shown in Figs. 5+10.
The simulation is referred to an acceleration with constant engine torque 7,, and constant
load torque 7. Fig. 5 shows the axles angular speeds and Fig. 6 shows the equivalent
gear ratios between the pairs of axles. The gear radii expressed by matrix R ensure that
when a clutch is engaged the corresponding gear ratio is an integer number. The overall
gear ratio from w; to w, is shown in Fig. 7. Finally, the static and Coulomb friction forces
are shown in Figs. 8+10.

For t = 0 the clutches 1, 3 and 6 are engaged. The static friction forces keep the
relative speeds d1, d3 and dg at zero and they do not exceed the maximum static friction
amplitude K, K3 and Kg as shown in Figs. 8+10.

Around t ~ 0.5s a single swap gear shift is executed. The clutch 1 is disengaged while
the clutch 2 is engaged. From ¢ = 0.5s to t = 0.7 s the clutches 1 and 2 are both slipping
indeed the ratio w;/ws is not integer and the friction forces equals the Coulomb friction
amplitudes. The clutches 3 and 6 remain engaged even if the friction forces changes due
to the gear shift. At the end of the gear shift the clutch 2 is engaged and its friction force
(due to the static friction) is within the values +Ks.

For t > 1.1s, the clutch 8 is slipping with kg # 0 , this is just to test the model.

Around t = 1.7s a double swap gear shift is performed: the pairs of clutches 1-2 and
3-5 are swapped. Around t = 2.5s a triple swap gear shift is performed: the pairs of
clutches 1-2, 4-5 and 6-7 are swapped. As shown in Fig. 7, the triple swap gear shift was
not optimal: the overall gear ratio does not have a monotonic behaviour. The control of
a triple swap gear shift is not a trivial task and the proposed model helps to find and to
test the gearbox control strategies.

6 Conclusions

Static and Coulomb friction are extensively used in automotive mechanical systems to
control the synchronization between two shafts or two axles. This paper have proposed
a method for the efficient simulation of a wide class of automotive mechanical systems
with static and Coulomb friction phenomena. The modeling approach is based on port-
Hamiltonian systems, the computation of the friction forces or torques requires the zero
crossing detection. If the hypothesis of an unique solution is possible, the computational
effort becomes significantly lower. Without an accurate zero crossing detection a slight
approximation is introduced, however the simulations are faster and sufficiently accurate
for most applications. The proposed approach have been used to simulate the behavior
of the Powershift gearbox provided with some high level farm tractors.
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Figure 5: Axles angular speeds.
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Figure 6: Speed ratios (reverse sign): from .J; to Jy (top), from J; to J; (center), from J;
to Jy (bottom).
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Figure 7: Equivalent overall gear ratio (reverse sign) from J; to Jj.
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Figure 8: Static and Coulomb friction y; (solid) and Friction maximum amplitude K; = k;
(dashed) for the clutches 1 (top) and 2 (bottom).
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w; (solid), K; = k; (dashed)
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Figure 9: Static and Coulomb friction y; (solid) and Friction maximum amplitude K; = k;
(dashed) for the clutches 3 (top), 4 (center) and 5 (bottom).
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Figure 10: Static and Coulomb friction yu; (solid) and Friction maximum amplitude K; =
k; (dashed) for the clutches 6 (top), 7 (center) and 8 (bottom).
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