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Abstract: A discrete second order trajectory generator for motion control systems
is presented. The considered generator is a nonlinear system which receives as input
a raw reference signal and provides as output a smooth reference signal satisfying
nonlinear constraints on the output derivatives as Uy, (#) < & < U}, (#) and
Vi <z< VL. The trajectory is generated on-line and the imposed constraints
can also be changed during system operation without modifying the system
stability. Moreover, almost minimum time response is ensured with guaranteed
no overshoot. The performances of the nonlinear generator are tested through
experiments on a linear motor. Copyright© 2005 IFAC
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1. INTRODUCTION

A common problem in many motion control ap-
plications is the tracking of standard reference
signals (i.e. piecewise continuous signals such as
steps, ramps, etc.) in systems that, as a conse-
quence of energetic and constructive limitations
(i.e. the torque curve of an electric motor), must
satisfy bounds on the controlled output deriva-
tives.

Linear or nonlinear regulators are commonly used
to track a standard reference signal. The steady
state exact tracking and the achievement of a
good behaviour during transients are both on
charge of the regulator. The main problem of

this type of solution is that the regulator is not
usually able to take into account the energetic
and constructive limitations of the plant. Thus
the transient response becomes a compromise
between velocity and absence of overshoot.

Trajectory generators allow to separate the track-
ing problem from the achievement of a good be-
haviour during transients. When a standard ref-
erence is applied, the output of a trajectory gen-
erator tracks the reference signal satisfying on-
line user-defined nonlinear bounds on the output
derivatives. If this constraints on the trajectories
matches the energetic and constructive limitations
of the controlled plant, than the plant can follow
the generated trajectory. Now a simpler regulator
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Fig. 1. Continuous time trajectory generator.

can be used to track the generated trajectory and
the output derivatives are available to implement
feed-forward actions. For more details on trajec-
tory generators please refer to (Brady, 1982) and
(Morselli, 2003).

This paper proposes a second order discrete time
trajectory generator that satisfies nonlinear con-
straints on the maximum acceleration of the type:
Uy (i) < & < Uf(d) and Vi < & < Vi,
This trajectory generator is the discrete time ver-
sion of the generator proposed in (Zanasi and
Morselli, 2001). This discretisation has been nec-
essary for the real application on the digital con-
trol of a linear motor.

The paper is organized as follows: Sec. 2 states the
control problem, Sec. 3 describes the discretiza-
tion procedure that leads to the discrete time
trajectory generator presented in Sec. 4. Some
experimental results are presented in Sec. 5.

2. PROBLEM STATEMENT

Let’s consider the chain of 2 integrators shown in
Fig. 1, where r(t) is the input, 7(¢) is the first time
derivative of the input, x(¢) is the output, &(t),
Z(t) are the first and the second time derivatives
of the output and u(t) = Z(¢) is the input control
signal of the chain of integrators. The following
assumptions hold:

1) The input reference signal r(t) satisfies piece-
wise the condition #(¢) = 0.

2) The reference input r(t) and its derivative 7(t)
are known for ¢ > 0.

According to this assumptions, the input reference
signal is a sequence of ramps and it is continuous
almost always. Square and saw tooth references
belong to this category.

Let’s denote with y(t), y(t) the error variables:

Using the error variables y(t) and g(t), the system
shown in Fig. 1 can be described by:

Y(t) = ACY(t) + b, u(t)
x(t) = y(t) + (1)

T r=1r,#]T and

b, = [‘j] @)

(1)

where x = [z, #]T, y = [y, 9]

01
a-=[0)

In (Zanasi and Morselli, 2001) it is presented the
nonlinear controller u(r,x) such that the output
x(t) of system (1) tracks the reference signal r(t)
with the following specifications:

S1) The velocity 4 and the acceleration u are
bounded: V;, < & < Vi, |#] = |u <
Unr (i), where V1, is the maximum velocity,
V7, is the minimum velocity and Uas(2) is a
continuous function which is strictly positive.

S2) When a constant velocity reference 7 is ap-
plied (satisfying the constraints V,, < 7 <
Vi) the tracking condition z(t) = r(t) is
ensured in finite time to and Vt > tg.

S3) When a discontinuous or a non appropriate
velocity reference (not constant or not possi-
ble with the constraints || = |u| < Up(2)
or exceeding the bound values Vj,, V1) is
applied, the perfect tracking is lost. As soon
as the admissible reference is re-established,
the tracking condition is achieved again in
minimum time and without overshoot.

Namely the output z(t) of the trajectory genera-
tor of Fig.1 is a filtered version of the raw refer-
ence signal (). The bounds on the derivatives of
z(t) give the degree of smoothness of the output
trajectory. The result presented in (Zanasi and
Morselli, 2001) is not completely suitable for an
on-line application with a digital controller for
two reasons: the demanding computational effort
required for the computation of the trajectories
and the implementation of a continuous control
law in a discrete system.

The aim of this paper is to find an approximated
discrete solution of the continuous time problem
expressed above. The approach will partially fol-
low the one presented in (Zanasi et al., 2000),
indeed that trajectory generator is a special sim-
pler case of the solution presented in this paper.
The proposed trajectory generator can be seen
in the context of the model predictive control
(Rawlings, 2000), in the following a dedicated
solution is presented in order to reduce the com-
putational effort.

3. DISCRETIZATION OF THE CONTINUOUS
TIME TRAJECTORY GENERATOR

By direct discretization of system (1) with sample
time 7', the following difference state space equa-
tion is obtained:

Yn4+1 = Ao yn +bo u, (3)

_ . . _ _A.T
Whereyn—wn_rna Yn = Tn — Tn, Ay =ce ,

by = J; e*<Tb.dr and

1T r
0= by=1| 2
01 T
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Fig. 2. Discrete time trajectory generator.

Applying to system (3) the state space transfor-
mation y, = T z,, 2z, =T"'y, where:

T? 11
_ | T A _ | T2 2T
T = 2 T = 1
T il

0 0 T |

one obtains the following transformed system:
— o [11] = [1]
Zny1 = A z,+b u, A:[Ol] b:[l_ (4)

System (4) is equivalent to system (3), but ex-
pressed in a normalized form with respect to the
sampling period T'. In the following, the two com-
ponents of the state vector z,, will be denoted with
the symbols 21, and 22 2 2, = [21,n 22.0]T -

Inverting system (4) with respect to time:

zj+1=Az; — b uy (5)
where
—1 1 -1 — 1= 0
A=A —[0 1} b=A b—[l] (6)

The state zj41 precede the state z; by one sam-
pling period, namely applying the control u,, = wuy,
the state z, = zg11 is mapped by (4) in the state
Zp+1 = Zg-

Property 1: let By, = [By ; By x]? be a point in
the plane (21, 22). The control uj; maps the point
By}, backward into a vertical line. Indeed:
By — Boy

Zr+1 = ABp — by = [ By — uy

| o
Property 2: let B;_;, By and By,1, be three
points in the plane (z1,22) such that Byi1 =
ABk — buk and Bk = ABk_l — buk_l, see
Fig. 3. All the points belonging to the vertical
strip between the two points By and Bji; can
be mapped forward into the segment between the
two points By, and B;_1 by a proper choice of the
control input .

Proof 2: let By, = [Bl,k—l Bg7k_1]T, the
coordinates of the two points By and By, are:

Bl,k—l_BQ,k—1:|

Bi = ABia—bur1= [ By j_1—up_1

Bii1 = ABy—bu,= [Bl,k1_2B2,k1+uk1]

By 1 —up—1—us

A point P, = [Pno1 Pn2]T belongings to the
vertical strip between the two points By and By41
can be expressed as:

By + aBy 41

P, = [ Pon ] a € [0,1]

Fig. 3. Mapping properties of the space state
transformation T.

Applying forward the control input
Up =Bap—1+a(Bay —Bojp—1) —Popy  (8)
the point P,, is mapped into the point P, 41:
Poi1 =Bi_1 + a(Br — Bi_1)

that is a point of the segment delimited by the
two points By and By_. o

Note that the control u,, depends only on the dif-
ference between the z5 component of P,, and the
zo component of P 1. Moreover the coefficient o
that identifies the horizontal position of P,, within
the vertical strip is the same that identifies the
position of P,,; within the segment between By,
and By_1, see Fig. 3. The vertical strip can be
divided in two regions, RT and R~, each point of
Rt (R™) is mapped into the segment between By,
and By_; by a positive (negative) control u,.

4. COMPUTATION OF THE DISCRETE
TIME CONTROL LAW

Since 7#(t) = 0 almost always, the velocity refer-
ence 1, is piecewise constant, let 7, = 74. The
following relations hold:

yn = TZ?,n mn = 'f'd + TZ?,n

The role of the function Ups(%) is replaced by
the two strictly positive functions U*(#,) and
U™ (&n):

Ut(in) = Ut (g + T 22.0) > 0

U (&n) =U (Fg+ T2, <0

Using the inverted system (5), let compute back-
ward the following two series of points of the plane
(21, 22) starting from the origin (0, 0):

BZH = ABZ - b“:
B; =[00)"
wf = Ut(iq+T Bf,)

By, = ABy —bup )
B, =[00]"

U, = Uf(fd-I-TBQ_’k)
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Fig. 4. Example of points B)!, segments S] and
curve .

Let 1 denote the symbol + or — such that the
points defined in (9) can be briefly denoted with
B}. Let S} denote the segment on the plane
(21, 22) delimited by the two points B} and B}, .
Finally, let 4" be the set of all the segments Sy,
see Fig. 4. Given a point z,, = [21, 29,7 it is
possible to compute 1 and the integer k£ in the
following way:

- + if Zl,nZO
[

i if By, <za<Bp, (10)
k=140 if 2,=0
i if Bi; > 21> B,

The integer k together with 7 identify the vertical
strip, delimited by the two consecutive points B}
and BZ_H, that contains the point z,. The value
of k increases with the distance from the origin.
From property 2 the control signal:

_nn n n
Ud,n = B2,k71 +a(B2,k_B2,k71)_Z27n

Zln_B?k 11

TPk g g (D)
o= B?,k-}-l_B?,k

0 if k=0

maps the point z, belongings to the strip £ into
the segment S} _, or into the origin when k = 0.

As shown later, for any point z, = [z1., 22.4]7
the corresponding control wu, of the generated
trajectory will be bounded between the two values

max min.
u® and upt™:

: + o+
L% Ud,n if wug,, <max(up ,u;_;)
n Ut(Fa+Tz,) else

N Ud,n if wg,>min(u, ,u,_)
" U (fqg+Tz2,) else

(12)

where u] = U"(7q + T B] ;) and k is the index of
the vertical strip that contains the point z,,.

If the sampling time 7' is sufficiently small and if
the two functions U™ (i) and U~ (&,) are suffi-
ciently smooth, then u®2* ~ U*(z,,) and u™" ~
U~ (4,). Therefore the two functions U*(i,,) give
a good approximation of the acceleration con-
straints that the generated trajectory satisfies.

Proposition: the time optimal trajectory to the
origin with acceleration u,, constrained between
u® and ul™ is obtained saturating the control

Uq,n between uj®* and uj"™™:

U, = max(u™™, min(u™™, ug.,)) (13)

Proof. Thanks to the property 2, the control
signal uq, given in (11) maps the point z, =
[21.n  22.]7 belonging to the strip k to the
segment S/, (i.e. the control ug in Fig. 4), then
from S}_, to S]_, and so on until the origin.
The three possible cases are: 1) z,, € S}, 2) z,
is “close” to S} and 3) z, is “far” from Sj.

1) If the point z, belongs to the segment S}
(i.e. the point P; in Fig. 4) the control signal
uy, defined in (13) is equal to ug,, and therefore
Uy, inherits the mapping properties of ug, (ie.
the generated trajectory follows the segments Sy,
S} _|,-.. until the origin). Indeed for the points on
the segment SZ the control ug,,, satisfies:

Udn = Bg,kfl +0‘(Bg,k _Bg,kfl) —Z2,n
= Bg,k—l +O‘(Bg,k _Bg,k—1)+- -
_Bg,k _a(Bg,kJrl _Bg,k)

= a(By,—By )+ (1-a)(B],_,—Bj,)

= au] + (1 —a)u] | € [un, uma]

2) If the point z, belongs to the strip k& but not
to the segment S}, the control u4,, tends to bring
the trajectory to the point z,4; on the segment
S? - If ugy € [win, u®] then u, = ug, and
the trajectory is actually mapped to the segment
Sy, and then (case 1) from a segment to the next

until the origin (i.e. the point P, in Fig. 4).

3) If ug,n ¢ [ui® 3] the control u, is limited
within u, € [UT(Fqg + T 20), U (Fa + T 22.2)]-
The point z,;; will not reach any segment S}
but it will be “closer” to the curve 47 (i.e. the
point Py in Fig. 4). Indeed note that the control
uq,n is positive (negative) for all the points below
(above) the curve ¥7 and not belongings to case 2
(see Fig. 3). Since sgn(un) = sgn(ugq,,) the com-
ponents zs p4+1, Z2 p42,... will increase (decrease).
Therefore, sooner or later the trajectory will be
close enough to the curve 4" to allow the mapping
on a segment S} (case 2).
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Fig. 5. Control schemes with(bottom) and with-
out(top) trajectory generator

The time optimality is a consequence of the back-
ward integration and optimal control theory, see
(Lee and Markus, 1967). o

Control law The control signal u,, of the sys-
tem (3) given by equations (13), (12), (11) and
(10), generates the minimum time trajectory
that tracks the reference signal with acceleration

bounded between u;'®* and up'".

The velocity bounds V, <z < VX/‘, can be easily
added with a sight modification of the control law,
as described in (Morselli and Zanasi, 2002). Let
1 . _ 1. .
uy " = 7 (Vi = &) Uy = 7WVar = i)
uY® and uY~ represent the control signal that
bring the system to the maximum or to the
minimum allowed speed respectively. The law:

min(u™, uy 't ugn)) (14)

generates the minimum time trajectory that
tracks the reference with acceleration bounded be-
tween un'®* and u'™ and speed bounded between

Vtand V.

_ min V-
Uy = max(uy™™, U,

The time behaviours of the variables r,, X,, U,
and U%*(i,) obtained with this control law are
shown in Fig. 6. These trajectories are obtained
with the constraints (15) described in the next
section. Two ramps are given as reference signal,
after a finite time the output z, of the trajectory
generator tracks exactly the reference signal 7,,.
As shown in Fig. 6 (bottom) the tracking con-
dition is achieved keeping the control input wu,
bounded between U™ (i,,).

The main computational effort of the control
law is for the research of the index k. In some
simple cases it is possible to find an explicit
relation to compute k as in (Zanasi et al., 2000).
Unfortunately an explicit relation is usually not
easy to be found. If the two functions U"(&) are
simple enough, it is possible to compute the points
B} explicitly and this reduces the computational
effort to find k. The research of the index k
is much simpler and less demanding than the
continuous integration required in (Zanasi and
Morselli, 2001). The research of the index k can
be seen as a simplified discrete integration. The

Position(—) and position reference(—-)
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Speed(—) and speed reference(—-)
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I I I I
0 05 15 2 25 3 35

1
Acceleration(—) and acceleration bounds(—-)

Fig. 6. Example of reference tracking. Solid lines:
control u,, speed %, and position x,. Dash-
dot lines: reference signals 7, r, and accel-
eration constraints U™ ().

proposed algorithm is now implementable in a
discrete time control system, the following section
shows some experimental results.

5. EXPERIMENTAL RESULTS

The experimental set-up is composed by a linear
motor (Philips LIMMS) with moving mass of 5Kg,
stroke length 600mm, maximum absolute force
limited below 80N. The translator is affected by a
Coulomb friction whose amplitude is not constant
along the stroke, moreover the back electromotive
force limits the acceleration at high translator
speeds. Hence the maximum acceleration of the
translator is limited by:

U-Upsgn(z)—Uyz if ©#0
Ut(i) =
U-Up if =0 (15)
U™ (3) = -U"(d)
where the coefficients are: U = 12.5 m/s?, U =
2.5 m/s* and U; =4 s~!. This choice is conser-
vative in order to obtain a trajectory that can be
followed by the translator taking into account the

variable amplitude of the Coulomb friction and
other parameters uncertainty.

The performances of the two control schemes
shown in Fig. 5 are compared. The input posi-
tion reference is a square signal with amplitude
between 150mm and 450mm and a period of 8
seconds. The PD controller is the same in both
schemes. The proportional coefficient was chosen
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Fig. 7. Step response. Top: position (solid)
and generated trajectory (dashed). Bottom:
tracking error.

to fit a requirement on the steady state error, the
derivative coefficient ensures the fastest settling
time without overshoot. The trajectory is gener-
ated on-line.

As shown in Fig. 7, the linear motor is able to
follow the generated trajectory. The knowledge of
the physical limits of the motor is embedded in
the parameters of the trajectory generator, thus
the settling time is lower when the trajectory
generator is used, see Fig. 8 where the vertical
dashed lines denote the instant when the position
reaches the final position +1mm.

The lower settling time is obtained without ex-
ceeding the constraints on the maximum force,
see Fig. 9. Until 0.25s the response of the con-
trol system without trajectory generator is faster,
this is due to the need of choosing the trajectory
parameters in a conservative way. A trajectory
generator able to improve the first part of the
response is under investigation.

6. CONCLUSIONS

A discrete second order trajectory generator for
motion control systems was presented and tested.
The possibility to choose the parameters of the
generated trajectory allows to shape the motion
of the translator taking into account any require-
ments of the type Uy, (i) < & < U}, (#) and
V<2< VL. Hence the generated trajectory
can be chosen in order to optimize either the set-
tling time or other features like the acceleration,
i.e. to achieve smoother starts and stops.
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Fig. 8. Step response: position with (solid) and
without (dashed) trajectory generator.
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Fig. 9. Step response: force reference with (solid)
and without (dashed) trajectory generator.
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