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1 Introduction

In this Technical Report we provide the proof of the Bayesian Cramer Rao
Bound (BCRB) for Localization Maps published in [1]. The notation used
in the following is introduced in Sec. II of that document.

The starting point for our computations is the Bayesian Fisher Informa-
tion Matrix (BFIM) decomposed as [2, p. 183, eq. (75)]:

J = Jz|p + Jp, (1)

where

Jz|p , Ez,p

{
− ∂

∂p

[
∂

∂p
ln f(z|p)

]T}
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and

Jp , Ep

{
− ∂

∂p

[
∂

∂p
ln f(p)

]T}
(2)

are respectively the contribution originating from the noisy data vector z and
that due to a-priori information, respectively.

2 Derivation of the Bounds for Localization

2.1 Derivation of the BFIM for Uniform Maps with
Generic-Shape

We start the derivation for the BFIM for uniform maps with a generic shape
introducing some properties for the smoothing function mentioned in [1, Sec
II.B] which allows us to model the map pdf. Then the 1-D result is obtained
and extended to the 2-D case.

2.1.1 Modeling of the Pdf

Let s(t) be a continuous and differentiable function s : R→ R. Assume that
s(t) has the following additional properties:

1. s(t) ≥ 0 ∀t ∈ R;

2.
∫
s(t)dt = 1;

3.
∫ ∂s(t)

∂t
dt = 0;

4. s(t) has support
[
−1

2
; +1

2

]
;

5. s(0) = 1;

The function s(·) is then a pdf function (assumptions 1 and 2) and has
an associated a-priori FI Js (assumption 3 is the regularity condition that
grants the FI existence) [3]. The assumptions 4 and 5 finally assure that s(·)
can be used to model bounded statistical distributions i.e. maps defined as
statistical distributions of the position to estimate [1], eventually with some
scaling and translation.

A function s(·) satisfying the conditions above is dubbed in the following
as “smoothing function”. Examples of functions that satisfy those hypotheses
are:
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1. s(t) = g
(
t+ 1

2
; δ
)
g
(
−t+ 1

2
; δ
)

where g(t; δ) , f(t+δ)
f(t+δ)+f(−t+δ) and f(t) ,

e−
1
t u(t);

2. s(t) = g
(
t+ 1

2
; δ
)
g
(
−t+ 1

2
; δ
)

where

g(t; δ) ,


0 t < −δ

− t3

4δ3
+ 3t

4δ
+ 1

2
−δ ≤ t ≤ +δ

1 t > +δ

Note that in the examples above δ ∈
(
0; 1

2

]
is a parameter which defines the

steepness of the pdf s(t), so that limδ→0 g (t; δ) = u(t), where u(t) is the unit
step function (which however does not have an associated FI). In the latter
example, the associated FI is easy to compute in closed form: Js(δ) = 9 ln 3

4δ
.

Finally note that s̃(t, a, b) , 1
b
s
(
t−a
b

)
is still a pdf function and its asso-

ciated FI is (see Eq. (2)):

J̃s , Et

{(
∂ ln

∂t

1

b
s

(
t− a
b

))2
}

= Et

{(
∂ ln s (u)

∂u

1

b

)2
}

=
Js
b2

2.1.2 Derivation of the BFIM for 1-D Maps

Consider a 1-D smoothed uniform map f(x) with support R ⊂ R; 1-D
uniform maps can always be modeled by a set of Nr disjoint 1-D rectangles
centered in the points {xn} with widths {wn}, where n = 1, ..., Nr. Thus the
map pdf can be expressed as:

f(x) =
1

W

Nr∑
n=1

s

(
x− xn
wn

)
=

1

W

Nr∑
n=1

wns̃(x, xn, wn) (3)

whereW ,
∑Nr

n=1wn, s(·) and s̃(·) are the smoothing functions as defined in
Appedix 2.1.1.

The a-priori FI associated with f(x) is (see Eq.(2)) Jx , Ex
{(

∂ ln f(x)
∂x

)2}
.

To simplify the expression we consider that a) for each value of x there is

only one rectangle at most for which
(
∂ ln f(x)
∂x

)2
6= 0, and b) varying x over

R, all rectangles contribute to the FI integral. Thus the FI can be written
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as the sum of the FI contribute of each rectangle:

Jx =
1

W

Nr∑
n=1

wnEx

{(
∂

∂x
ln s̃(x, xn, wn)

)2
}

=
1

W

Nr∑
n=1

wnJ̃s =
Js
W

Nr∑
n=1

1

wn

2.1.3 Derivation of the BFIM for 2-D Maps

Consider a 2-D smoothed uniform map f(p) with support R ⊂ R2; with the
assumptions (a) and (b) of [1, Sec II.B] and the notation introduced there,
the pdf can be expressed as:

f(p) =
1

A

N(y)∑
i=1

s

(
x− wm,i(y)

wi(y)

)
·
N(x)∑
j=1

s

(
y − hm,j(x)

hj(x)

)
where s(·) is a smoothing function as defined in Appedix 2.1.1. Also note

that the regularity condition Ep

{
∂ ln f(p)
∂p

}
= 0 is easily verified thanks to the

linear operators involved and s(·), which is assumed to respect that condition.
The first diagonal term of the BFIM associated to the prior knowledge 2

can be written, using the iterated expectation and focusing on the FI for the
coordinate x, as:

[Jp]1,1 , Ep

{(
∂ ln f(p)

∂x

)2
}

= Ey

{
Ex|y

{(
∂ ln f(p)

∂x

)2
}}

(4)

If we now ignore the smoothing for the y coordinate, that is we make the ap-

proximation f(p) ≈ 1
A
∑N(y)

i=1 s
(
x−wm,i(y)

wi(y)

)
= W(y)

A
1
W(y)

∑N(y)
i=1 s

(
x−wm,i(y)

wi(y)

)
,

where W(y) ,
∑N(y)

i=1 wi(y), we reduce the evaluation of the inner expec-
tation to the evaluation of the FI of a 1-D map composed by Nr = N(y)
rectangles of widths {wi(y)} centered in the points {wm,i(y)}. Thus, using
the result obtained in Appendix 2.1.2, we have that:

Ex|y

{(
∂ ln f(p)

∂x

)2
}
≈ W(y)

A
Js
W(y)

N(y)∑
i=1

1

wi(y)
(5)
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so that plugging Eq. (5) into Eq. (4) we obtain [Jp]1,1 ≈
Js
A

∫
Y
∑N(y)

i=1
1

wi(y)
dy.

Symmetrically, ignoring the smoothing for the x coordinate, we obtain an
approximated expression for the Bayesian Fisher Information (BFI) relative
to the coordinate y; the two equations for x and y can be combined together
as:

diag {Jp} =
Js
A

diag


∫
Y

N(y)∑
n=1

dy

wn(y)
,

∫ N(x)∑
n=1

dx

hn(x)

 (6)

Note however that the two approximations previously mentioned, con-
sidered together are exact only for rectangular maps. Also note that the
cross-terms [Jp]2,1 and [Jp]1,2 of the BFIM are non-zero if and only if the
parameters x and y are independent (like in a 2-D rectangle); in general, be-
cause of the smoothing the independence doesn’t hold but is typically weak,
so that a good approximation for the BFIM is [1, Eq. (4)]:

Jp ≈
Js
A

diag


∫
Y

N(y)∑
i=1

dy

wi(y)
,

∫
X

N(x)∑
i=1

dx

hi(x)


For a discussion of this result please refer to [1].
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