An Energy-aware Scheduling Algorithm in DVFS-enabled Networked Data Centers CLOSER 2016 - TEEC Session

Mohammad Shojafar, Claudia Canali, Riccardo Lancellotti, and Saeid Abolfazli

Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy

April 24, 2016

Agenda

Introduction

- Problem in data centers
- \Box Our contribution

Model

- Model Architecture
- $\hfill\square$ Computing Model
- □ Frequency Reconfiguration Model
- $\hfill\square$ Channel/Communication Model
- Optimization problem and solution
- Performance Evaluation
- Conclusion

Introduction

- Cloud Data Centers: Energy-saving computing is critical
- Our focus is in the Virtualized Networked Data center (VNetDC) supporting cloud
- Qualifying point of our approach, we consider:
 - Traffic exchange in VNetDCs
 - Load balancing for incoming request
 - DVFS (multi-frequency CPUs) hardware technology
- QoS: processing time + communication time \rightarrow challenging constraint

Introduction

Our solution addresses:

- Minimize the overall energy for the computing-plus-communication resources in VNetDCs
- Guaranteeing the time limit of each task and bandwidth limitation of each server jointly by changing the reconfiguration capability

Detail:

- Dynamic load balancing
- Job = chunk of data to process
- Online job decompositions and scheduling
- Distribute the workload among multiple VMs
- Solve nonlinear/nonconvex optimization problem

Model Architecture

Model

Assumptions:

- $1) \ \mbox{Physical servers with DVFS}$
- 2) Each server hosts one heterogeneous VM (private cloud scenario)
- 3) VNetDC comprises *M* independent congestion-free half-duplex channels
- 4) A VM on server *i* is capable to process F(i) bits per second
- 5) No queue is considered for incoming/outgoing workload into/from the system
- 6) Data centers utilize off-the-shelf rackmount physical servers, which are interconnected by commodity Fast/Giga Ethernet switches
- 7) Each job has size of L_{tot}
- 8) Maximum processing (computation and communication) time for each job is \overline{T} (QoS constraints)

Optimization Problem

Goal: minimize the overall resulting communication-plus-computing energy, formally defined as:

$$\mathcal{E}_{tot} \triangleq \sum_{i=1}^{M} \mathcal{E}_{CPU}(i) + \sum_{i=1}^{M} \mathcal{E}_{Reconf}(i) + \sum_{i=1}^{M} \mathcal{E}_{net}(i) \quad [Joule], \quad (1)$$

- $\mathcal{E}_{CPU}(i)$: Computation energy for server *i*
- *E_{Reconf}(i)*: Reconfiguration energy for server *i*
- *E_{net}(i)*: Channel/Communication energy for server *i*

Computing Model *VM*(*i*) **attributes**:

$$\{Q, \mathbf{f}(i), \mathbf{t}(i), f_i^{max}, T, i = 1, ..., M\},$$
 (2)

- Q: number of CPU frequencies allowed for each VM (plus an idle state)
- f(i) = {F_j(i) | j = 0,..., Q}: discrete frequency set in VM(i)-using DVFS
- $f_i^{max} \triangleq F_Q(i)$: maximum available frequency in VM(i)
- t(i) = {t_j(i) | j = 0,..., Q}: discrete time set in VM(i) corresponding to f_j(i) in VM(i)
- $\sum_{j=0}^{Q} t_j(i) \le T$: time allowed the *VM*(*i*) to fully process each submitted task, computation only constraint

Computing Model

Fig. 2 illustrates an example for Q = 5.

A: active percentage of gates; C_{eff} : effective load capacitance

Frequency Reconfiguration Model

Frequency policy: Scale up/down VMs' processing rates at the minimum cost.

We define internal switching cost and external switching cost Internal switching cost: $f_j(i) \rightarrow f_{j+k}(i)$ (k steps movement to reach the next active discrete frequency)

External switching cost: the cost for external-switching from the final active discrete frequency of VM(i) at the end of a job to the first *active discrete frequency* for the next incoming job of size L_{tot}

$$\sum_{i=1}^{M} \mathcal{E}_{Reconf}(i) \triangleq k_e \sum_{i=1}^{M} \sum_{k=0}^{K} (\Delta f_k(i))^2 + E_{xt}Cost$$
(4)

 $k_e (J/(Hz)^2)$:an unit-size frequency switching $\Delta f_k(i) \triangleq f_{k+1}(i) - f_k(i)$ $Ext_Cost \triangleq k_e M(f_Q^t - f_0^{t-1})^2$

Channel/Communication Model

Shannon-Hartley exponential formula

$$P_{net}(i) = \zeta_i \left(2^{R(i)/W_i} - 1 \right) + P_{idle}(i), \ [Watt], \tag{5}$$

■
$$\zeta_i \triangleq \frac{\mathcal{N}_0^{(i)} W_i}{g_i}$$
, $i = 1, ..., M$ -noise spectral power density
■ $\mathcal{N}_0^{(i)}$ (*W*/*Hz*)

- W_i (Hz) Transmission bandwidth
- R(i): Transmission rate over link i
- \blacksquare g_i: gain of the *i*-th link
- i) One-way transmission delay: $D(i) = \sum_{j=1}^{Q} F_j(i)t_j(i)/R(i)$ ii) $\max_{1 \le i \le M} \{2D(i)\} + T \le \overline{T}$. (Minimize the slowest VM)

$$\mathcal{E}_{net}(i) \triangleq P_{net}(i) \left(\sum_{j=1}^{Q} \frac{F_j(i)t^j(i)}{R(i)}\right) \ [Joule]. \tag{6}$$

Optimization problem and solution

$$\min \sum_{i=1}^{M} \mathcal{E}_{CPU}(i) + \sum_{i=1}^{M} \mathcal{E}_{Reconf}(i) + \sum_{i=1}^{M} \mathcal{E}_{net}(i)$$
(7.1)
s.t.: $\sum_{i=1}^{M} \sum_{j=0}^{Q} F_j(i) t_j(i) = L_{tot},$ (7.2)
 $\sum_{i=1}^{M} R(i) \le R_t,$ (7.3)
 $\sum_{j=0}^{Q} t_j(i) \le T, \quad i = 1, \dots, M,$ (7.4)
 $\sum_{j=0}^{Q} \frac{2F_j(i)t_j(i)}{R(i)} \le \overline{T} - T, \quad i = 1, \dots, M,$ (7.5)
Eq. $0 < t_i(i) < T, 0 < R(i) < R_t, \quad i = 1, \dots, M, \quad i = 0, \dots, Q,$ (7.6)

Optimization problem and solution

- (6.1) Eq. (7.1) is the objective function which consists of the sum of three terms which accounts for the computing energy, the reconfiguration energy cost is the networking energy
- (6.2) Eq. (7.2) is the (global) constraint which guarantees that the overall job is decomposed into M parallel tasks $F_j(i)t_j(i)$ is the workload processed for each discrete frequency f_j which is processed by VM *i* during the interval $t_j(i)$
- (6.3) Eq. (7.3) ensures that the bandwidth summation of each VM must be less than the maximum available bandwidth of the global network
- (6.4) Eq. (7.4) is the constraint on computation time
- (6.5) Eq. (7.5) guarantees that the duration of each computing interval is no negative and less than T

Optimization problem and solution

1) We can simplify communication part as:

$$\sum_{i=1}^{M} \sum_{j=0}^{Q} 2P_{net}(i) \left(\frac{F_j(i)t_j(i)}{R(i)}\right) = (\overline{T} - T) \sum_{i=1}^{M} \sum_{j=0}^{Q} P_{net}(i) \left(\frac{2F_j(i)t_j(i)}{\overline{T} - T}\right)$$
(8)

2) The problem feasibility:

$$\sum_{i=1}^{M} \sum_{j=0}^{Q} F_j(i) t_j(i) \le R_t (\overline{T} - T)/2$$
(9)

$$\sum_{i=1}^{M} \sum_{j=0}^{Q} F_j(i) t_j(i) \le \sum_{i=1}^{M} T f_i^{max}.$$
 (10)

Performance Evaluation-Simulation setup

i) Comparison with

- Standard (or Real) available DVFS-enabled technique (Kimura et al., 2006),
- □ Lyapunov (Urgaonkar et al., 2010)
- IDEAL no-DVFS (Mathew et al., 2012) and NetDC (Cordeschi et al., 2010) [Theoretical Lower bounds]
- ii) CVX solver (Grant and Boyd, 2015) + MATLAB
- iii) Three different scenarios: two synthetic workloads and a real-world workload trace

iv)
$$L_{tot}$$
: $[\overline{L}_{tot} - a, \overline{L}_{tot} + a]$

Performance Evaluation-Simulation setup

Significant parameters and sensevity analysis:

$$\begin{split} & \overline{\mathcal{E}}_{tot} \triangleq \frac{1}{Max_slot} \sum_{i=1}^{Max_slot} \sum_{i=1}^{M} \mathcal{E}_{tot}(i) \\ & \overline{\mathcal{E}}_{CPU} \triangleq \frac{1}{Max_slot} \sum_{i=1}^{Max_slot} \sum_{i=1}^{M} \mathcal{E}_{CPU}(i) \\ & \overline{\mathcal{E}}_{Reconf} \triangleq \frac{1}{Max_slot} \sum_{i=1}^{Max_slot} \sum_{i=1}^{M} \mathcal{E}_{Reconf}(i) \\ & \overline{\mathcal{E}}^{net} \triangleq \frac{1}{Max_slot} \sum_{i=1}^{Max_slot} \sum_{i=1}^{M} \mathcal{E}_{net}(i) \\ & \mathbf{k}_{e}, \zeta \end{split}$$

- T, \overline{T} (QoS parameters)
- AET= average execution time

First Scenario

 $\overline{L}_{tot} \equiv 8 \text{ [Gbit] } a = 2 \text{ [Gbit]}$ **DVFS**: Intel Nehalem Quad-core Processor (Kimura et al., 2006) called $F1 = \{0.15, 1.867, 2.133, 2.533, 2.668\}$

Table: Default values of the main system parameters for the first test scenario.

Parameter	Value	Parameter	Value
PE=M	$[1,\ldots,10]$	T	7 [s]
Т	5 [<i>s</i>]	R _t	100 [<i>Gbit/s</i>]
C_{eff}	$1 [\mu F]$	k _e	$0.05 \ [Joule/(GHz)^2]$
F	F1 [GHz]	Q	5
A	100%	P ^{idle}	0.5 [<i>Watt</i>]
ζι	0.5 [<i>mWatt</i>]	f _i ^{max}	2.668 [GHz]

Second Scenario

 $\overline{L}_{tot} \equiv 70 \text{ [Gbit] } a = 10 \text{ [Gbit]}$ **DVFS**: Crusoe cluster with TM-5800 CPU in (Almeida et al., 2010), e.g., $F2 = \{0.300, 0.533, 0.667, 0.800, 0.933\}$

Table: Default values of the main system parameters for the second test scenario.

Parameter	Value	
k _e	$0.005 \ [Joule/(GHz)^2]$	
Q	5	
F	F2 [GHz]	
\overline{L}_{tot}	70 [<i>Mbit</i>]	
М	{20, 30, 40}	
f _i ^{max}	0.933 [<i>GHz</i>]	

- $\overline{\mathcal{E}}_{tot}$ -vs.-M
- ${\color{black}\bullet} \uparrow M \propto \overline{\mathcal{E}}_{tot} \downarrow$
- The average energy-saving of the proposed method is approximately 50% and 60% compared to Lyapunov-based and Standard schedulers, respectively

- $\overline{\mathcal{E}}_{CPU}$ -vs.-M
- $\uparrow M \propto \overline{\mathcal{E}}_{CPU} \downarrow$
- The average energy-saving of the proposed method is approximately 25% and 33% compared to Lyapunov-based and Standard schedulers, respectively

$$\overline{\mathcal{E}}_{\textit{Reconf}}$$
-vs.- M

•
$$\uparrow M \propto \overline{\mathcal{E}}_{Reconf} \uparrow \ll \overline{\mathcal{E}}_{CPU}$$
 or $\overline{\mathcal{E}}^{net}$

- $\overline{\mathcal{E}}^{net} \text{-vs.-} M$ $\bullet \uparrow M \propto \overline{\mathcal{E}}^{net} \downarrow$
 - The proposed scheduler is about 10%, 50%, 65% better than NetDC, Lyapunov, and Standard schedulers, respectively

- $\overline{\mathcal{E}}_{tot}$ -vs.-*M*-Second Scenario
- $\blacksquare \uparrow M \propto \overline{\mathcal{E}}_{tot} \downarrow$
- The energy reduction of proposed method compared to Standard and Lyapunov is about 20% and 15%, respectively

Average execution time (AET) per-job

Workload ↑ ∝ AET ↓ per-job: proposed scheduler being able to adapt itself to the incoming traffic using optimization technique (see (7.1)), with a consequent reduction in the AET per job
 M ↑ ∝ AET ↓

Third Scenario- Real traces

Real-world workload trace (Urgaonkar et al., 2007)

Third Scenario- Real traces

Average energy reduction of the proposed scheduler with NetDC, Lyapunov and Standard is 19%, 85%, and 82%, respectively.

Performance Evaluation-achievements

According to the simulations we understand:

- + The scheduler is a scalable and adaptive. It can save energy and meet QoS demands better than alternatives
- + Our scheduler outperforms Lyapunov, because Lyapunov is unable to manage the online/instantaneous job fluctuations which is handled in our approach
- + Our scheduler outperforms NetDC and IDEAL no-DVFS techniques, because these methods work with the continue ranges of frequencies, which is unrealistic and not feasible in real scenarios
 - Our method needs some estimations for applying in the real system (open issue)

Conclusion

- 1. We propose a novel scheduler to:
 - Minimize the overall energy for the computing-plus-communication resources in VNetDCs
 - □ Guaranteeing the time limit of each task, bandwidth limitation of each server by changing the reconfiguration capability
- Our proposed scheduler manages online workloads, and inter-switching costs among active discrete frequencies for each VM
- 3. Our method is able to approach the IDEAL algorithm significantly faster than Lyapunov, Standard and NetDC models, respectively
- 4. **Future research:** The energy saving using workload estimating and management of WAN TCP/IP mobile connections

Thanks for the attention and ready for the questions!!!

Performance Evaluation-Scenario 2

Total average consumed energy for 20, 30, and 40 VMs and high volume of incoming jobs with respect to R_t (maximum network data transfer rate) and the communication coefficient ζ in order to evaluate the energy consumption of the proposed method while facing various SLA ranges:

$\overline{\mathcal{E}}_{tot}$ -vs.-*M*-Second Scenario

- $= \uparrow M \propto \overline{\mathcal{E}}_{tot} \downarrow$
- $\uparrow T \propto (\overline{\mathcal{E}}_{CPU}, \overline{\mathcal{E}}_{tot}) \downarrow$
- $\uparrow \zeta \propto (\overline{\mathcal{E}}^{net}, \overline{\mathcal{E}}_{tot}) \uparrow$
- The scheduler can save energy depending on the assigned communication boundary

Problem Solution-detail

Proof: Let $R(i)^*$ be the optimal solution of the eq. (7.1), and let

$$\mathcal{C} \triangleq \left(\overrightarrow{F_{j}(i)t^{j}(i)}\right) \in (\mathbb{R}_{0}^{+})^{M} : \left(\sum_{j=0}^{Q} F_{j}(i)t^{j}(i)/R(i)^{*}\left(\overrightarrow{F_{j}(i)t^{j}(i)}\right)\right) \leq (\overline{T} - T)/2, i = \{1, \dots, M\}, j = \{0, \dots, Q\};$$
$$\sum_{i=1}^{M} \sum_{j=0}^{Q} R(i)^{*}\left(\overrightarrow{F_{j}(i)t^{j}(i)}\right) \leq R_{t}$$
$$\sum_{j=0}^{Q} \frac{2F_{j}(i)t^{j}(i)}{R(i)} \leq \overline{T} - T \rightarrow \left(\sum_{j=0}^{Q} \frac{F_{j}(i)t^{j}(i)}{R(i)}\right) \leq \frac{(\overline{T} - T)}{2}. \quad (11)$$

$$\sum_{j=0} \frac{2r_j(r)r(r)}{R(i)} \le \overline{T} - T \to R(i) \ge \sum_{j=0} \left(\frac{2r_j(r)r(r)}{\overline{T} - T}\right).$$
(12)

Why Shanon for channel model?

- i) The theoretical relation of the transmission rate R(i) and power of the channel for each server is more critical, so, we use one of the most complex relations to evaluate
- ii) We already used easier model (linear or quadratic model) and the results are more appealing
- iii) This model uses for the inside of data center on a physical wired connections