

Automated clustering of VMs for scalable cloud monitoring and management

C. Canali <u>R. Lancellotti</u>

University of Modena and Reggio Emilia

Cloud computing challenges

- Large datacenters \rightarrow can have > 10^5 VMs
- Scalability problems:
 - VMs monitoring
 - VMs management (migration, packing, ...)
- Current approach reduce amount of data in a uniform way:
 - Reduce sampling frequency (e.g., only 2 samples per day)
 - Reduce number of metrics considered (e.g., consider only CPU, disregard network)
- → Reduced monitoring effectiveness
 - Less information available to take management decision

Exploiting VM similarity

- No information on VM behavior is used to improve scalability
 - Consistent with IaaS vision
 - \rightarrow Room for improvement
- Improving scalability of monitoring and management
 - Cluster VM with similar behavior
 - Exploit a two step approach to monitoring and management

Improving monitoring scalability

- Group similar VM together
- Elect a few (e.g., 3) cluster representatives
- Detailed monitoring of cluster rep.
- Reduced monitoring of other VMs
- Data collected can be reduced by 1 OoM
- Numeric example:
 - 110 VMs, 11 metrics, sampling freq. 5 min. → ~2 M samples/day
 - 2 classes, 3 representative per class \rightarrow 100K samples/day
 - Data reduced to $\sim 1/20$

Contribution

- Proposal: Methodology for automated clustering of VMs
- Two steps:

1.Extraction of a quantitative model of VM behavior

2.Clustering of VMs

 Exploit data about each VM for a short period of time (initial dataset used for clustering)

Methodology details

- Extraction of a quantitative model of VM behavior
 - *Input:* time series of metrics describing VM i behavior (X1, ..., Xm)
 - Compute correlation matrix Si for each VM i
 - Output: feature vectors Vi obtained form Si

Clustering of VMs

- Input: feature vector Vi
- Clustering based on k-means algorithm
- Output: clustering solution

Case study

Datacenter supporting a Web application

- Web server and DBMS
- 110 VMs
- 11 metrics for each VM,
- Sampling frequency: 5 min

Goal: separate Web servers and DBMS

- Main metric: Accuracy of identification

Three types of analyses

- Impact of time series length
- Impact of filtering techniques
- Impact of number of nodes

Impact of time series length

- Reduction of available data
 → reduction in the accuracy of clustering
- Accuracy > 0.7
 for time series
 > 20 dd

SoftCom - 11-13 September 2012 - Split

- Application of data filtering:
 - Remove idle periods in time series
- Data filtering improves performance
 - Removal of periods
 providing
 limited
 information
- Accuracy >0.8 even for 5 days time series

SoftCom - 11-13 September 2012 - Split

Impact of number of nodes

Number of VMs	Accuracy	Clustering time [s]
10	1	49.7
30	0.86	59.5
50	0.84	68.6
70	0.84	78.0
90	0.83	88.3
110	0.84	95.3

- Accuracy is not adversely affected by # of VM
 - Accuracy ~ 0.85 for [30-110] VMs
- Clustering time grows linearly with # of VM
- We expect clustering time to remain acceptable even for large data centers

Conclusion and future work

- Scalability in cloud systems is an open issue
- Proposal of novel methodology to improve scalability through clustering of similar VMs
- First experimental results are encouraging
 - Accuracy >0.8 even for very short time series
- Future research directions:
 - Validation with more data set (Help!)
 - Performance improvement
 - Other approaches to model VM behavior (e.g., Bhattacharyya distance)
 - Other clustering algorithms (e.g., spectral clustering)

Automated clustering of VMs for scalable cloud monitoring and management

C. Canali <u>R. Lancellotti</u>

University of Modena and Reggio Emilia