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WEBLab

● WEBLab: Web Engineering and 
Benchmarking Lab

● Contributing to
– DIEF - Department of Engineering 

“Enzo Ferrari” (not only automotive)
– CRIS - Research center of Security

● Research interests
– Distributed systems
– Cloud computing
– Performance / scalability issues
– Monitoring in distributed systems
– Security in networked / cloud systems
– ...
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Agenda

● Background and motivation
– IaaS Cloud
– Reference scenario
– Traditional approach vs. clustering
– Impact on monitoring and management

● Clustering based on metric correlation
– Theoretical model(s)
– Experimental evaluation

● Clustering based on Bhattacharyya distance
– Theoretical model(s)
– Experimental evaluation

● Conclusion and future work
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Cloud computing
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Cloud computing

● Cloud computing AKA Utility computing
● Access to resources and services:

– Multiple customers  same provider→
– Leveraging economies of scale
– No initial cost (pay per use)
– Exploit virtualization technologies

● Multiple cloud paradigms:
– SaaS
– PaaS
– IaaS

NOTE:
We may 
still have
long-time

commitments
(e.g. reserved

instances)
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Challenges: monitoring

● Large data centers (> 105 VMs)
 huge amount of data→

● Multiple data centers 
 geographic data exchange→

● VM can be anything
 treat VM as black boxes→

●  → Scalability issues

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM



December 6th, 2013 - DEIB - PoliMi 7

Challenges: monitoring

● Current approach 
 reduce amount of data in a uniform way:→

– Reduce sampling frequency 
– Reduce number of metrics considered 

●  → Reduced monitoring effectiveness
– Less information available to take 

management decision
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Challenges: management

● Large data centers  large opt. problems→
– Too many variables
– Too many bounds
– Like a huge multi-dimensional tetris

● VM can be anything
 treat VM as black boxes→
 difficult search for →

complementary workloads
●  → Scalability issues
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Challenges: management

● Current approach 
 reduce amount of bounds:→

– Assume VM resource utilization constant 
over long periods (e.g. day/night)

– Reduce number of metrics considered 
– Consider only nominal resource utilization

 → rely on hierarchical management

●  → Reduced management effectiveness
– No support for fine grained management
– Sub-optimal management decisions
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VM
VM

Exploiting VM similarity

● No information on VM behavior is used 
to improve scalability

● Proposal: automatically cluster VMs with similar 
behavior

● Requirements: 
– No human intervention
– No models for VM classes
– No crystal ball

VM
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Improving monitoring scalability

● Group similar VMs together
● Elect a few (e.g., 3) cluster representatives

– Support for byzantine failures in 
representatives

● Detailed monitoring of cluster 
representatives

● Reduced monitoring of other VMs

VM
VM

VM
VM

VM
VM

VM
VM

CL1 CL2
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Improving monitoring scalability

● Numeric example
● Every VM as a black box:

– 1000 VMs, K metrics, 
1 sample/5 min

–  → 288 103 K sample/day
● With clustering:

– 15 clusters, 67 VMs per cluster
– 3 representative per cluster

 → 45 VMs, K metrics, 1 sample/5 min
– Non representatives

 955 VM, K metrics 1 sample/6 hour→
–  → 16,8 103 K sample/day

● Data collected reduced by 17:1
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Improving management scalability

● Server placement and consolidation
● Build a small consolidation solution 
● Replicate solution as a building block

Global problem
Building block solution

Residual problem
solution
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Reference scenario

● IaaS with long term commitment
– Amazon Reserved instances, private cloud 

● Reactive VM relocation
– Local manager

● Periodic global consolidation
– Global optimization
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Proposed methodology

● Methodology:
– Define quantitative model for 

VM behavior
– Cluster similar VM together

● Elect a few (e.g., 3) cluster 
representatives

● Fine-grained monitoring of 
cluster representatives

● Reduced monitoring applied to 
other VMs

– Reduced number of metrics
– Lower sampling frequency

Extract quantitiative
 Model of VM behavior

Quantitative
 model

Data samples
(time series)

Clustering

Clustering 
solution
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Design choices

● How to represent VM behavior?
● Use correlation between metrics

– Possible enhancement: use PCA
● Use probability distribution of metrics

– Use histograms & Bhattacharyya distance
– May need to select which information are 

“useful”
– Must merge heterogeneous information from 

multiple metrics
– May exploit ensemble techniques to provide 

robust performance
– Possible enhancement: use histogram 

smoothing
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Design choices

● How to perform clustering?

● Use K-Means
– When VM behavior is represented as a

feature vector

● Use spectral clustering
– When VM behavior can be

used to compute distance/
similarity between VMs
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Agenda

● Background and motivation
– IaaS Cloud
– Reference scenario
– Traditional approach vs. clustering
– Impact on monitoring and management

● Clustering based on metric correlation
– Theoretical model(s)
– Experimental evaluation

● Clustering based on Bhattacharyya distance
– Theoretical model(s)
– Experimental evaluation

● Conclusion and future work
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Theoretical model

● Extraction of a quantitative model 
of VM behavior

– Input: time series of metrics 
describing VM n behavior 
(X1, ... ,Xm)

– Compute correlation matrix Sn for 
each VM n

– Output: feature vectors Vn

Extract quantitiative
 Model of VM behavior

Quantitative
 model

Data samples
(time series)

Clustering

Clustering 
solution

NOTE:
We exploit

simmetry in
matrix Sn
to remove
redundant
information
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Theoretical model

● Clustering of VMs
– Input: feature vector Vi
– Clustering based on k-means 

algorithm
– Output: clustering solution Extract quantitiative

 Model of VM behavior

Quantitative
 model

Data samples
(time series)

Clustering

Clustering 
solution
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Case study

● Datacenter supporting a e-health Web
application

– Web server and DBMS
– 110 VMs
– 11 metrics for each VM, 
– Sampling frequency: 5 min

● Goal: separate Web servers and DBMS
– Main metric: Purity of clustering

● Three types of analyses
– Impact of time series length
– Impact of filtering techniques
– Impact of number of nodes
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Impact of time series length

● Reduction of available data
   reduction in the purity of clustering→

● Purity > 0.7
  for time series 
  > 20 dd
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Impact of filtering techniques

● Application of data filtering:
– Remove idle periods in time series

● Data filtering 
improves 
performance
– Removal of 

periods 
providing 
limited 
information

● Purity >0.8 
even for 5 days 
time series
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Impact of number of nodes

Number of VMs Purity Clustering time [s]

10 1 49.7

30 0.86 59.5

50 0.84 68.6

70 0.84 78.0

90 0.83 88.3

110 0.84 95.3

● Purity is not adversely affected by # of VM
– Purity ~ 0.85 for [30-110] VMs
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Proposed enhancement

● The clustering time grows 
– Linearly with # of VM
– Quadratically with # of metrics

●  → Potential scalability issue

● Can we reduce the number of metrics?

● Can we reduce the quadratic relationship?
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Proposed enhancement

● The clustering time grows 
– Linearly with # of VM
– Quadratically with # of metrics

●  → Potential scalability issue

● Can we reduce the number of metrics?
 NO: clustering purity is heavily affected→

● Can we reduce the quadratic relationship?
 YES: can exploit PCA techniques→
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Reducing number of metrics
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PCA-based technique
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PCA-based technique

● Building the feature vector:
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How many principal components?

● Use of Skree plot
● 1 component captures ~60% of variance 
●  → good enough for us



December 6th, 2013 - DEIB - PoliMi 31

Performance evaluation
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Performance evaluation
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Agenda

● Background and motivation
– IaaS Cloud
– Reference scenario
– Traditional approach vs. clustering
– Impact on monitoring and management

● Clustering based on metric correlation
– Theoretical model(s)
– Experimental evaluation

● Clustering based on Bhattacharyya distance
– Theoretical model(s)
– Experimental evaluation

● Conclusion and future work
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Modeling VM behavior

● Model based on probability 
distribution of resource usage

– Multiple resources considered 
(metrics)

● Histogram for every metric, every VM
– Normalized histogram (∑h=1)
– B: number of buckets (critical)

VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution
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Defining VM similarity

● Use of Bhattacharyya distance
– Determine distance matrix for each 

couple of VMs, each metric VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution

Dm(n1,n2)=−ln (∑i √hn1 ,i⋅hn2 , i)
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Merging multi-metric information

● For each metric we have a different 
distance information

● How to merge the contribution of 
each metric?

● Two solutions:
– Euclidean distance merging
– Solve separate clustering problems 

and merge clustering solutions
(clustering ensemble)

VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution
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Merging multi-metric information

Euclidean
Distance
merging

Clustering
ensemble
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Euclidean distance merging

● For each VMs n1, n2

●

● Open problems:
– Is it correct to consider every 

metric together?
– Is there a way to select the right 

metrics?

VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution

D(n1 ,n2)=√∑ Dm(n1 , n2)
2
⋅am
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Choosing the right metrics

● With euclidean merging multiple 
metrics determine the final distance matrix

● Not every metric provide significant 
information

● Proposal to identify relevant metrics
– Consider auto-correlation: ACF decreasing 

rapidly  random variations→
– Consider Coefficient of Variation: 

CF » 1  spiky and noisy behavior→
CF « 1  little information provided→

●  → Merge information from metrics with
– ACF decreasing slowly
– CF ~ 1
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Clustering ensemble

● Two-step process
● For every metric m

– Compute Bhattacharyya distance 
matrix

– Compute clustering solution
● Compute co-occurence matrix A

– For each couple of VMs compute 
number of times they are in the 
same cluster

● Clustering using matrix A as affinity
● OK to consider every metric?

– Quorum-based approach ensures 
good robustness of results

VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution
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Clustering ensemble: example

VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution

A VM1 VM2 VM3 VM4

VM1 3 2 0 0

VM2 2 3 1 1

VM3 0 1 3 3

VM4 0 1 3 3

Clustering
solutions

Metric 1 Metric 2 Metric 3

VM1 CL1 CL2 CL2

VM2 CL1 CL2 CL1

VM3 CL2 CL1 CL1

VM4 CL2 CL1 CL1
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Clustering ensemble: example

VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution

A VM1 VM2 VM3 VM4

VM1 3 2 0 0

VM2 2 3 1 1

VM3 0 1 3 3

VM4 0 1 3 3

Clustering
solutions

Metric 1 Metric 2 Metric 3

VM1 CL1 CL2 CL2

VM2 CL1 CL2 CL1

VM3 CL2 CL1 CL1

VM4 CL2 CL1 CL1
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Clustering algorithm

● Use of spectral clustering algorithm
– Input: Square, symmetric 

distance/affinity matrix
– Output: Cluster ID for every VM

● Additional feature:
– Number of clusters can be 

automatically determined through 
spectral gap analysis

VM behavior

Hist

Data samp.

Similarity

Dist. Mat.

Clustering

Clust. 
solution
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Case study

● IaaS cloud supporting e-health
– Web server and DBMS
– 110 VMs
– 10 metrics for each VM, 
– Sampling frequency: 5 min
– Euclidean merging of metrics

● Goal: separate Web servers and DBMS
– Main metric: Purity of clustering

● Three types of analyses
– Impact of time series length
– Impact of metric selection
– Impact of histogram charact.
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Impact of time series length

NOTE:
We consider
Euclidean
distance
merging
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Impact of metric selection

Network I/O

Mem paging

# of procs.
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Impact of metric selection
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Impact of histogram 
characteristics
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Histogram smoothing

● Bhattacharyya distance affected
by quantization errors in histograms

 sensitivity to histogram characteristics→
● Proposal: gaussian smoothing of histograms 

before computing Bhattacharyya distance 
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Histogram smoothing

No smoothing:
Bhattacharyya distance

0.496

Smoothing:
Bhattacharyya distance

0.297

Reduction by 40%
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Effect of histogram smoothing
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Clustering Ensemble

● Overall goal:
– Reduce sensitivity to histogram 

characteristics (number of histogram bkts)
– No need to select significant metrics
– No smoothing required

● Potential drawback
– Higher computational cost
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Clustering Ensemble



December 6th, 2013 - DEIB - PoliMi 54

Clustering Ensemble

● Major stability improvement
● Almost insensitive to histogram number of 

buckets

Clustering ensemble Euclidean merging
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Clustering Ensemble

● Significant performance penalty:
● 1 clustering for each metric
● Typically uses more metric than euclidean 

merging

Clustering ensemble Euclidean merging
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Agenda

● Background and motivation
– IaaS Cloud
– Reference scenario
– Traditional approach vs. clustering
– Impact on monitoring and management

● Clustering based on metric correlation
– Theoretical model(s)
– Experimental evaluation

● Clustering based on Bhattacharyya distance
– Theoretical model(s)
– Experimental evaluation

● Conclusion and future work
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Conclusion and future work

● Scalability in IaaS cloud systems 
 open issue→

● Proposal an analysis of mutiple methodologies to 
improve scalability through clustering of similar 
VMs

– Representing VM behavior using correlation
– Reduction of correlation data with PCA
– Representing VM behavior with histograms
– Euclidean merging of distances
– Metric selection
– Histogram smoothing
– Clustering ensemble
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Conclusion and future work

● Experimental results are encouraging
– Can achieve high clustering purity
– Can provide accurate clustering even with 

very short time series
– Can provide stable results
– Time for clustering is acceptable

● This is not a crystal ball
– But may be a useful tool 

to improve monitoring 
and management of cloud
data centers
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Conclusion and future work

● Future research directions:

● Evaluate different models for VM behavior

● Application of clustering to improve 
scalability of data center management
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