

Automatic clustering of similar VM to improve the scalability of monitoring and management in laaS cloud infrastructures

C. Canali <u>R. Lancellotti</u>

University of Modena and Reggio Emilia Department of Engineering "Enzo Ferrari"

WEBLab

- WEBLab: Web Engineering and Benchmarking Lab
- Contributing to
 - DIEF Department of Engineering "Enzo Ferrari" (not only automotive)
 - CRIS Research center of Security

Research interests

- Distributed systems
- Cloud computing
- Performance / scalability issues
- Monitoring in distributed systems
- Security in networked / cloud systems

Agenda

Background and motivation

- laaS Cloud
- Reference scenario
- Traditional approach vs. clustering
- Impact on monitoring and management

Clustering based on metric correlation

- Theoretical model(s)
- Experimental evaluation
- Clustering based on Bhattacharyya distance
 - Theoretical model(s)
 - Experimental evaluation
- Conclusion and future work

Cloud computing

Cloud computing

NOTE:

We may

still have

long-time

- Cloud computing AKA Utility computing
- Access to resources and services:
 - Multiple customers \rightarrow same provider
 - Leveraging economies of scale
 - No initial cost (pay per use)
 - Exploit virtualization technologies

Challenges: monitoring

- Large data centers (> 10⁵ VMs)
 → huge amount of data
- Multiple data centers
 → geographic data exchange
- VM can be anything
 → treat VM as black boxes
- → Scalability issues

- Current approach
 → reduce amount of data in a uniform way:
 - Reduce sampling frequency
 - Reduce number of metrics considered
- → Reduced monitoring effectiveness
 - Less information available to take management decision

Challenges: management Large data centers \rightarrow large opt. problems - Too many variables - Too many bounds - Like a huge multi-dimensional tetris VM can be anything \rightarrow treat VM as black boxes \rightarrow difficult search for ALGORITHM complementary workloads

→ Scalability issues

- Current approach
 → reduce amount of bounds:
 - Assume VM resource utilization constant over long periods (e.g. day/night)
 - Reduce number of metrics considered
 - Consider only nominal resource utilization
 - → rely on hierarchical management
- → Reduced management effectiveness
 - No support for fine grained management
 - Sub-optimal management decisions

to improve scalability **Proposal: automatically cluster**

Proposal: <u>automatically</u> cluster VMs with similar behavior

No information on VM behavior is used

- Requirements:
 - No human intervention
 - No models for VM classes
 - No crystal ball

Exploiting VM similarity

Improving monitoring scalability

- Group similar VMs together
- Elect a few (e.g., 3) cluster representatives
 - Support for byzantine failures in representatives
- Detailed monitoring of cluster representatives
- Reduced monitoring of other VMs

Improving monitoring scalability

- Numeric example
- Every VM as a black box:
 - 1000 VMs, K metrics,
 - 1 sample/5 min
 - → 288 10³ K sample/day
- With clustering:
 - 15 clusters, 67 VMs per cluster
 - 3 representative per cluster
 - \rightarrow 45 VMs, K metrics, 1 sample/5 min
 - Non representatives
 - → 955 VM, K metrics 1 sample/6 hour
 - → 16,8 10³ K sample/day
- Data collected reduced by 17:1

Improving management scalability

- AND STUDIOTUM MUMICING CC
- Server placement and consolidation
- Build a small consolidation solution
- Replicate solution as a building block

Building block solution

- IaaS with long term commitment
 - Amazon Reserved instances, private cloud
- Reactive VM relocation
 - Local manager
- Periodic global consolidation

- Global optimization

Time series for

VM clustering

Proposed methodology

- Methodology:
 - Define quantitative model for VM behavior
 - Cluster similar VM together
- Elect a few (e.g., 3) cluster representatives
- Fine-grained monitoring of cluster representatives
- Reduced monitoring applied to other VMs
 - Reduced number of metrics
 - Lower sampling frequency

Design choices

Substrum Mutinensis et re-

- How to represent VM behavior?
- Use correlation between metrics
 - Possible enhancement: use PCA
- Use probability distribution of metrics
 - Use histograms & Bhattacharyya distance
 - May need to select which information are "useful"
 - Must merge heterogeneous information from multiple metrics
 - May exploit ensemble techniques to provide robust performance
 - Possible enhancement: use histogram smoothing

Design choices

- How to perform clustering?
- Use K-Means
 - When VM behavior is represented as a feature vector
- Use spectral clustering
 - When VM behavior can be used to compute distance/ similarity between VMs

Agenda

- Background and motivation
 - laaS Cloud
 - Reference scenario
 - Traditional approach vs. clustering
 - Impact on monitoring and management
- Clustering based on metric correlation
 - Theoretical model(s)
 - Experimental evaluation
- Clustering based on Bhattacharyya distance
 - Theoretical model(s)
 - Experimental evaluation
- Conclusion and future work

December 6th, 2013 - DEIB - PoliMi

Extraction of a quantitative model of VM behavior

- Input: time series of metrics describing VM n behavior
 (X1, ..., Xm)
- Compute correlation matrix Sn for each VM n

Theoretical model

- Clustering of VMs
 - Input: feature vector Vi
 - Clustering based on k-means algorithm
 - Output: clustering solution

Datacenter supporting a e-health Web application

- Web server and DBMS
- 110 VMs
- 11 metrics for each VM,
- Sampling frequency: 5 min
- Goal: separate Web servers and DBMS
 - Main metric: Purity of clustering
- Three types of analyses
 - Impact of time series length
 - Impact of filtering techniques
 - Impact of number of nodes

21

December 6th, 2013 - DEIB - PoliMi

December 6th, 2013 - DEIB - PoliMi

Impact of filtering techniques

- Application of data filtering:
 - Remove idle periods in time series

Data filtering improves performance

- Removal of periods
 providing
 limited
 information
- Purity >0.8 even for 5 days time series

Impact of number of nodes

Number of VMs	Purity	Clustering time [s]
10	1	49.7
30	0.86	59.5
50	0.84	68.6
70	0.84	78.0
90	0.83	88.3
110	0.84	95.3

Purity is not adversely affected by # of VM
 Purity ~ 0.85 for [30-110] VMs

- The clustering time grows
 - Linearly with # of VM
 - Quadratically with # of metrics
- → Potential scalability issue
- Can we reduce the number of metrics?

Can we reduce the quadratic relationship?

- The clustering time grows
 - Linearly with # of VM
 - <u>Quadratically</u> with # of metrics
- \rightarrow Potential scalability issue $\langle \! \! \rangle$
- Can we reduce the number of metrics?
 → NO: clustering purity is heavily affected

Can we reduce the quadratic relationship?
 → YES: can exploit PCA techniques

Reducing number of metrics

December 6th, 2013 - DEIB - PoliMi

PCA-based technique

December 6th, 2013 - DEIB - PoliMi

PCA-based technique

Building the feature vector:

How many principal components?

- Use of Skree plot
- 1 component captures ~60% of variance
- → good enough for us

Performance evaluation

December 6th, 2013 - DEIB - PoliMi

Performance evaluation

December 6th, 2013 - DEIB - PoliMi

Agenda

- Background and motivation
 - laaS Cloud
 - Reference scenario
 - Traditional approach vs. clustering
 - Impact on monitoring and management
- Clustering based on metric correlation
 - Theoretical model(s)
 - Experimental evaluation
- Clustering based on Bhattacharyya distance
 - Theoretical model(s)
 - Experimental evaluation
- Conclusion and future work

Modeling VM behavior

- Model based on probability distribution of resource usage
 - Multiple resources considered (metrics)

Histogram for every metric, every VM

- Normalized histogram (Σ h=1)
- B: number of buckets (critical)

Х

Defining VM similarity

December 6th, 2013 - DEIB - PoliMi

Merging multi-metric information For each metric we have a different distance information Data samp VM behavior How to merge the contribution of each metric? Hist Two solutions: Similarity Euclidean distance merging Solve separate clustering problems Dist. Mat. and merge clustering solutions (clustering ensemble) Clustering Clust. solution

Merging multi-metric information

December 6th, 2013 - DEIB - PoliMi

orum Muti

Euclidean distance merging For each VMs n1, n2 Data samp • $D(n_1, n_2) = \sqrt{\sum D_m (n_1, n_2)^2 \cdot a_m}$ VM behavior Open problems: - Is it correct to consider every metric together? Similarity - Is there a way to select the *right* Dist. Mat. metrics? Clustering solution

Clust.

Hist

Choosing the right metrics

- And a state of the state of the
- With euclidean merging multiple
 metrics determine the final distance matrix
- Not every metric provide significant information
- Proposal to identify relevant metrics
 - Consider auto-correlation: ACF decreasing rapidly → random variations
 - Consider Coefficient of Variation: $CF \gg 1 \rightarrow spiky and noisy behavior$ $CF \ll 1 \rightarrow little information provided$

• \rightarrow Merge information from metrics with

- ACF decreasing slowly
- CF ~ 1

Clustering ensemble

- Two-step process
- For every metric m
 - Compute Bhattacharyya distance matrix
 - Compute clustering solution
- Compute co-occurence matrix A
 - For each couple of VMs compute number of times they are in the same cluster
- Clustering using matrix A as affinity
- OK to consider every metric?
 - Quorum-based approach ensures good robustness of results

Clustering ensemble: example

Clustering solutions	Metric 1	Metric 2	Metric 3
VM1	CL1	CL2	CL2
VM2	CL1	CL2	CL1
VM3	CL2	CL1	CL1
VM4	CL2	CL1	CL1

А	VM1	VM2	VM3	VM4
VM1	3	2	0	0
VM2	2	3	1	1
VM3	0	1	3	3
VM4	0	1	3	3

December 6th, 2013 - DEIB - PoliMi

Clustering ensemble: example

Clustering solutions	Metric 1	Metric 2	Metric 3
VM1	CL1	CL2	CL2
VM2	CL1	CL2	CL1
VM3	CL2	CL1	CL1
VM4	CL2	CL1	CL1

А	VM1	VM2	VM3	VM4
VM1	3	2	0	0
VM2	2	3	1	1
VM3	0	1	3	3
VM4	0	1	3	3

Data samp. VM behavior Hist Similarity Dist. Mat. Clustering Clust. solution

December 6th, 2013 - DEIB - PoliMi

Clustering algorithm

- Use of spectral clustering algorithm
 - Input: Square, symmetric distance/affinity matrix
 - Output: Cluster ID for every VM
- Additional feature:
 - Number of clusters can be automatically determined through spectral gap analysis

Case study

- IaaS cloud supporting e-health
 - Web server and DBMS
 - 110 VMs
 - 10 metrics for each VM,
 - Sampling frequency: 5 min
 - Euclidean merging of metrics
- Goal: separate Web servers and DBMS
 - Main metric: Purity of clustering
- Three types of analyses
 - Impact of time series length
 - Impact of metric selection
 - Impact of histogram charact.

December 6th, 2013 - DEIB - PoliMi

Impact of metric selection 1 X6 (CV >> 1) ___ 0.9 Network I/O 0.8 Purity Mem paging 0.7 # of procs. 0.6 0.5 120 60 40 3 180 30 20 15 10 5 4 2 Time series length [days]

Impact of metric selection

December 6th, 2013 - DEIB - PoliMi

Impact of histogram characteristics

December 6th, 2013 - DEIB - PoliMi

Histogram smoothing

- Bhattacharyya distance affected by quantization errors in histograms
 → sensitivity to histogram characteristics
- Proposal: gaussian smoothing of histograms before computing Bhattacharyya distance

December 6th, 2013 - DEIB - PoliMi

Histogram smoothing

December 6th, 2013 - DEIB - PoliMi

Effect of histogram smoothing

December 6th, 2013 - DEIB - PoliMi

Clustering Ensemble

Overall goal:

- Reduce sensitivity to histogram characteristics (number of histogram bkts)
- No need to select significant metrics
- No smoothing required
- Potential drawback
 - Higher computational cost

December 6th, 2013 - DEIB - PoliMi

December 6th, 2013 - DEIB - PoliMi

Clustering Ensemble

- Major stability improvement
- Almost insensitive to histogram number of buckets

Clustering Ensemble

- Significant performance penalty:
- 1 clustering for each metric
- Typically uses more metric than euclidean merging

Agenda

- Background and motivation
 - laaS Cloud
 - Reference scenario
 - Traditional approach vs. clustering
 - Impact on monitoring and management
- Clustering based on metric correlation
 - Theoretical model(s)
 - Experimental evaluation
- Clustering based on Bhattacharyya distance
 - Theoretical model(s)
 - Experimental evaluation
- Conclusion and future work

Conclusion and future work

- Scalability in IaaS cloud systems
 → open issue
- Proposal an analysis of mutiple methodologies to improve scalability through clustering of similar VMs
 - Representing VM behavior using correlation
 - Reduction of correlation data with PCA
 - Representing VM behavior with histograms
 - Euclidean merging of distances
 - Metric selection
 - Histogram smoothing
 - Clustering ensemble

Conclusion and future work

- Suntarum Mutinenste Contraction of the second second
- Experimental results are encouraging
 - Can achieve high clustering purity
 - Can provide accurate clustering even with very short time series
 - Can provide stable results
 - Time for clustering is acceptable

This is not a crystal ball

 But may be a useful tool to improve monitoring and management of cloud data centers

Conclusion and future work

• Future research directions:

- Evaluate different models for VM behavior
- Application of clustering to improve scalability of data center management

References

- Sumarum Mutinensis er dage
- Claudia Canali, Riccardo Lancellotti, "Automatic Virtual Machine Clustering based on Bhattacharyya Distance for Multi-Cloud Systems", Proc. of 1st International Workshop on Multi-cloud Applications and Federated Clouds (Multi-Cloud'13), Prague, April 2013
- Claudia Canali, Riccardo Lancellotti, "Automated Clustering of Virtual Machines based on Correlation of Resource Usage", Journal of Communications Software and Systems (JCOMSS), Vol. 8, No. 4, Dec. 2012
- Claudia Canali, Riccardo Lancellotti, "Automated Clustering of VMs for Scalable Cloud Monitoring and Management", 20th International Conference on Software, Telecommunications and Computer Networks (SOFTCOM'12), Split, Croatia, 11-13 Sept. 2012
- Claudia Canali, Riccardo Lancellotti, "Exploiting Ensemble Techniques for Automatic Clustering of Virtual Machine Clustering in Cloud Systems", to appear on Automated Software Engineering
- Claudia Canali, Riccardo Lancellotti, "Improving scalability of cloud monitoring through PCA-based Clustering of Virtual Machines", to appear on Journal of Computer Science and Technology

Automatic clustering of similar VM to improve the scalability of monitoring and management in laaS cloud infrastructures

C. Canali <u>R. Lancellotti</u>

University of Modena and Reggio Emilia Department of Engineering "Enzo Ferrari"