Impact of memory technology trends on performance of Web systems

Mauro Andreolini University of Modena Michele Colajanni University of Modena

Riccardo
Lancellotti
University of Modena

Characteristics of today's Web

- Complex Web-based services (dynamic Web content)
- Technology trends:
 - Increasing capacity of network connections
 - Growing amount of available memory (RAM)

Year	Cost [\$/Mb]	Typical Amount of RAM	Memory embedded
1995	20	128 Mb	DBs will be com-
2000	2	1 Gb	mon in a near fu-
2005	0,2	8 Gb	ture even for large
2010	0,02	64 Gb	Web sites

What is the impact of technology trends on Web system performance?

- Front-end tier: static Web resources, interaction with clients
- Middle tier: generation of dynamic Web resources
- Back-end tier: data repository (DBMS)

Focus on available memory for the DBMS

Motivation

- Technology trends in memory lead to changes:
 - In the system performance
 - In the bottlenecks limiting the performance

How do bottlenecks change as a function of technology trends? (no previous studies in literature)

- Bottleneck analysis is essential to plan system upgrade that can improve performance
- Need to understand and anticipate the effect of technology trends
- This approach can be applied to other Web-based applications and Web services
 - Focus on O.S. and server software (Web, DBMS, application servers)

Experimental testbed

- Dynamic Web site
 - Apache + PHP +MySQL
 - TPC-W like workload
- Additional studies with different technologies and workloads (not shown)
- Fine-grained performance analysis (sar, oprofile)

- Performance evaluation:
 - When does a bottleneck appear?
 - What is the bottleneck?
- Three memory scenarios:
 - All in-memory (100% of DB in memory)
 - Partially in-memory (60%)
 - Mostly on-disk (30%)

Page response time

Impact of available memory on system capacity (When does a bottleneck appear)

Page response time

Partially in memory scenario

- Analysis of the contribution to response time by the three tiers
 - The back-end tier contribution drives the explosion of response time
 - The bottleneck is on the DBMS.
- Confirmation of the impact of DBMS on performance
- This is true for different technologies and scenarios
 - PHP, J2EE
 - Multiple workload mixes and memory scenarios

Bottleneck analysis focused on DBMS node

Bottleneck analysis (Mostly on-disk scenario)

- Bottleneck identification (What is the bottleneck):
 - Low utilization of sockets
 - Negligible utilization of CPU
 - Full utilization of disk

Bottleneck analysis (Partial in-memory scenario)

- Bottleneck identification (What is the bottleneck):
 - Full utilization of sockets
 - High utilization of CPU
 - High utilization of disk

Bottleneck analysis (All in-memory scenario)

- Bottleneck identification (What is the bottleneck):
 - Low utilization of sockets
 - Full utilization of CPU
 - Negligible utilization of disk

Analysis of results

- The amount of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the DBMS has a significant term of available RAM on the causes of poor performance
- Little memory available → performance is bounded by disk throughput,
 - Little system level interventions are available (reduced memory → caching effectiveness is reduced)
 - hardware upgrade is the most effective approach (e.g, RAID systems, memory)
- More memory available → socket descriptors limit system performance
 - high number of parallel requests can be a common situation (e.g., preliminary study on network effects)
 - should reduce request parallelism (e.g., replication of DBMS nodes, exploit of component-based systems)

Analysis of results

- Large amount of memory available → performance is limited by asynchronous I/O (interaction with O.S. disk cache),
- Computationally expensive checksumming operations
 - Should reduce asynchronous I/O (e.g., query caching)
- Message for the future: Interaction between O.S. disk cache and DBMS buffer cache can be inefficient and this can become a major bottleneck

Need for efficient DBMS tailored for memory-embedded DB operations

Future work

- Evaluation of the impact of network
 - Increasing capacity of network connections
 - What is the impact of network technology trends on system performance and on system bottlenecks?
- Study with multiple applications and workloads
 - Pub/sub systems (e.g., forums, blogs, ...)
 - Web-based Auctions
 - Web services

WEB Lab group homepage

http://weblab.ing.unimo.it/