

Exploiting Classes of Virtual Machines for Scalable laaS Cloud Management

C. Canali <u>R. Lancellotti</u>

Dipartimento di Ingegneria "Enzo Ferrari" Università di Modena e Reggio Emilia

Challenges of Cloud computing

- Vision from a laaS perspective:
 → continuous growth
- More VMs, more data, ...
 - \rightarrow More data centers
 - \rightarrow Larger data centers
- Growth by 10² in 15 years
- Scalability problems due to the infrastructure size:
 - Monitoring of so many VMs
 - Management of infrastructure
 - \rightarrow placement of VMs over physical nodes

VM placement challenges

- Large number of VMs
- \rightarrow Many physical nodes
- Multiple metrics
- Sampling at multiple times
 - Complementary workload patterns

VM placement challenges

- Large number of VMs
- → Many physical nodes
- Multiple metrics
- Sampling at multiple times
 - Complementary workload patterns
- → A huge, multidimensional Tetris game...

Reference scenario

Assumptions

- VM placement: periodic task
 - We consider consolidation window of 24 hour
- Cloud provider has knowledge of VMs classes
 - Information from PaaS/SaaS provider to laaS provider
 - e.g., Elastic map-reduce, Elastic load balancer
 - laaS can monitor and classify VMs (proposals available in literature)

Consolidation models

SVLISNALITY STREET RECORD

- Consolidation model:
 - Solution of optimization problem
 - Input: future resource requirements (per-VM or per-class), Infrastructure description
- Available solutions:
 - Multi-dimensional bin packing (MBP)
 - First Fit Decreasing Heuristic (FFD) special case of bin packing: we consider only one dimension
 - Class-based placement (CBP)

Multi-dimensional bin packing

- Single bin-packing problem for whole data center
- Classes of VMs not considered
- Multi-dimensional problem:
 - Multiple time intervals
 - Multiple resources

Problem formulation

- Number of node capacity constraints grows with:
 - Number of nodes
 - Number of time intervals considered
- Addressing scalability problems:
 - Wall time limit on optimizer
 - Reduce number of time intervals (e.g., instead of 5min intervals can consider 1h, 4h, 12h, 1d...)
 - Use of heuristics instead of optimal solution
 - Special case: if only one time interval is considered multi-dimensional bin packing \rightarrow bin packing (FFD)

Class-based VM placement

- Build a small consolidation solution (B-block)
- Replicate solution as a building block
- Solve residual problem (E-Block)

Building block solution (B-block)

Residual problem Solution (E-block)

Class-based VM placement

- Additional input: \rightarrow number of B-blocks \overline{b}
- Choice: b=n. of VMs in class with minimum cardinality
- Impact of b
 → open issue
- Two bin packing problems (B- E-blocks)
- Major dimensionality
 reduction

B-block problem formulation

• Objective function:

• E- block problem formulation is similar

Experimental setup

NUTINESS ET RECO

- Number of VMs from 150 to 1200
- 44 classes, each class [8-50] VMs
- Focus on CPU (only trace available) Utilization: [0-100%]
- Each physical node has capacity of 800%
- Time intervals considered:
 - 5m (288 int.)
 - 1h (24 int.)
 - 12h (2 int.)
 - 1d (1 int.)
- IBM ILOG CPLEX Optimizer v12
- Maximum time for consolidation: 1800s (30m)

Experimental results

• MBP:

- Optimal solution only for small problems (≤ 200)
- Reducing dimensionality improves scalability
- No acceptable solutions for large problems (≥1200)

CBP:

- Always reaches solution
 even with 5m time interval
- Solves to optimality for medium problems (≤ 700)

VMs	CBP	MBP	MBP	MBP	MBP
	5m	1d	12h	1h	5m
150	S/S	S	S	S	S
200	S/S	S	S	S	S
250	S/S	L	L	L	L
300	S/S	L	L	L	L
400	S/S	L	L	L	Ν
500	S/S	L	L	L	Ν
600	S/S	L	L	Ν	Ν
700	S/S	L	L	Ν	Ν
800	L/S	L	L	Ν	Ν
900	L/S	L	L	Ν	Ν
1000	L/S	L	L	Ν	Ν
1100	L/S	L	Ν	Ν	Ν
1200	L/S	Ν	Ν	Ν	Ν

Solution quality: small number of VMs

- Solution quality: relative to LP relaxation of the problem
 - Lower is better
- FFD: low quality results
- MBP:
 - 5m: best solution
 - Time interval reduction
 - \rightarrow lower quality
 - VM set size growth
 → lower quality
- CBP quality remains stable with problem size

Computation time

- FFD: very fast but inaccurate
- When problem size grows, MBP becomes slower may result in sub-optimal solutions (quality reduction)
- CBP: very fast → scalable solution for larger problems

Consolidation model	150 VMs	200 VMs	250 VMs	300 VMs
CBP 5m (B/E)	0.43/0.46	0.49/0.28	0.54/0.49	0.98/0.40
FFD 1d	0.05	0.05	0.06	0.07
MBP 1d	0.21	11.36	45.28	147.73
MBP 12h	4.13	79.39	1800(L)	1800(L)
MBP 1h	32.87	91.20	1800(L)	1800(L)
MBP 5 min	233.09	270.59	1800(L)	1800(L)

Solution quality: large number of VMs

- MBP:
 - VM set size growth
 - \rightarrow lower quality
 - → need time interval reduction
- FFD: always worst performing
- CBP:
 - VM set size growth
 - \rightarrow always reaches solution
 - \rightarrow solution quality improves

Conclusions and future work

- The challenge of VM placement in cloud computing
- Proposal of Class-based placement technique
- Better scalability compared to alternatives:
 - Can manage larger problems
 - Higher quality solution within the same time frame
- Future work:
 - New experiments: larger data centers, more resources
 - Analysis of B-block size (b parameter): impact on performance, automatic estimation
 - Different optimization strategies (e.g., dynamic programming)

Acknowledgment

- The authors acknowledge the support of the UniMORE-FAR2014 project SAMMClouds
- SAMMClouds: Secure and Adaptive Management of MultiClouds

Exploiting Classes of Virtual Machines for Scalable laaS Cloud Management

C. Canali <u>R. Lancellotti</u>

Dipartimento di Ingegneria "Enzo Ferrari" Università di Modena e Reggio Emilia