A flexible and robust lookup algorithm for P2P systems

Mauro Andreolini, <u>Riccardo Lancellotti</u>

University of Modena and Reggio Emilia

Motivations

- Wide popularity of P2P paradigm
 - File sharing
 - Multimedia streaming
 - File systems
 - Middleware architectures (e.g., P2P+Grid)
 - Cloud computing

Focus on P2P lookup algorithms

Need to request resources and obtain suitable responses

Requirements of P2P lookup algorithms

- Flexibility
 - Support for complex query semantics
 - Resource identified through multiple keywords

Effectiveness

- Queries can identify all the suitable resources
- High query hit rate
- Efficiency
 - Low query overhead
 - Low number of messages exchanged per query

Robustness

- Fault tolerance
- Queries must be answered even is some node is unavailable

Available alternatives: Flood-based

- Flood-based / Probabilistic flood algorithms
- Exploration of the network through neighbor propagation (exploits characteristics of power law networks)
- Probabilistic flood explores each neighbor with probability p
- Characteristics:
 - Flexibility
 - Effectiveness
 - Efficiency
 - Robustness

Available alternatives: DHT

- Distributed Hash Tables (DHTs)
- Query routing within an hash space
- Need to know exact Destination ID
- Characteristics:
 - Flexibility
 - Effectiveness
 - Efficiency
 - Robustness

→ Goal: merge the benefits of existing solutions without disrupting existing protocols

Proposal: Fuzzy-DHT

- Implements keyword-based search within a DHT (Pastry)
- Inherits efficiency from DHT
 - Preserves low query overhead
- Introduces a new query semantics

- Improved flexibility

- Minor changes in the original routing algorithm
 - no need for reverse index data structures
- Changes with respect to original DHT:
 - New hash function to represent keywords
 - Modified query routing algorithm

Fuzzy DHT hash function

Hash function must:

- Support the representation Keywords of multiple keywords kw1, kw2, ..., kwk
- Have fixed length on *n* bit (compact representation)
- Use of a Bloom Filter as the hash function
- The ID of a resource depends on its keywords
- Bloom filter uses *m* hash functions to represent set contents as a string of *n* bits

Support for keyword matching

• Given

- a query KQ that represents a set of keywords
- a resource ID KR with its keywords
- Query semantics:
 - Keywords in KQ are a subset of keywords in KR
- Returns a hit if and only if every bit set to 1 in KQ is set also in KR
- Each "0" in the query is considered as a wildcard

Pastry lookup algorithm

- Lookup based on Plaxton algorithm (n bits → d digits)
- Routing of query KQ, step k
 - Receiving node (KX) has the first k-1 digits equal to KQ (shared prefix)
 - The next hop (KY) is selected in order to have a shared prefix of k digits
- This algorithm must be adapted to lookup based on multiple keywords

Fuzzy-DHT lookup algorithm

- At each lookup step the original query is forked
- Example: step k
 - Digit k is the first digit after shared prefix
 - For each "0" in digit k
 we split the query (query forking)
 - Two forked queries, with bit set to 0 and 1
 - No need to fork first k-1 digits: fork already occurred
- Forked queries are routed according to Plaxton algorithm

- Digit k=0101 \rightarrow 4 forked queries
 - Digit k=0101
 - Digit k=0111
 - Digit k=1111
 - Digit k=1101

Fuzzy-DHT evaluation

- Fuzzy-DHT satisfies flexibility requirements by design
- Evaluation of:
 - Effectiveness
 - Efficiency
 - Robustness

Comparison with other alternatives

- Flood-based protocol (Gnutella)
- Probabilistic flood

 Detailed model for flood-based protocols → fair comparison

- Barabasi-Albert model for neighbors
- Preliminary experiments for protocol tuning
- Simulation based on ns-2

- Wide set of scenarios considered
- Network size:
 - 100-1000 nodes (default 500 nodes)
- Network topology
 - BRITE network topology generator
 - Real topology University network (not shown)
- Query selectivity (sigma)
 - 0.2 0.8 (default 0.6)
 - Amount of "0" in the query key
 - Typical value for a 3-4 keyword query: 0.6-0.7
- Node failure probability
 - 0 0.15 (default 0)

Impact of query selectivity

High effectiveness for all protocols

- within 5% of theoretical values
- Probabilistic flood is slightly less effective than other solutions

- Fuzzy-DHT → high efficiency
 - significant reduction of overhead
 - Fuzzy-DHT overhead at least 1 order of magnitude lower

DPDNS '09 - Rome - 29 May 2009

Scalability evaluation

 Effectiveness of protocol does not change with network size

- Overhead grows linearly with number of nodes
 - Fuzzy-DHT preserves a low overhead in large networks
 - Fuzzy-DHT improves lookup scalability

DPDNS '09 - Rome - 29 May 2009

Robustness evaluation

- Presence of failure does not change the results of the analysis
- Fuzzy-DHT is a robust algorithm

Low overhead

Conclusions

- Analysis of P2P requirements for lookup algorithms
- Trade-off between flexibility and efficiency
 - Flood-based vs. DHT
- Proposal of Fuzzy-DHT
 - Flexibility → Fuzzy-DHT supports multiple keywords
 - Effectiveness \rightarrow Fuzzy-DHT has hit rate close to 1
 - Efficiency → Query overhead at least one order of magnitude lower than alternatives
 - Robustness → Small performance degradation even with 15% of faulty nodes
- Fuzzy-DHT can be easily implemented with little modifications over existing DHTs

A flexible and robust lookup algorithm for P2P systems

Mauro Andreolini, <u>Riccardo Lancellotti</u>

University of Modena and Reggio Emilia