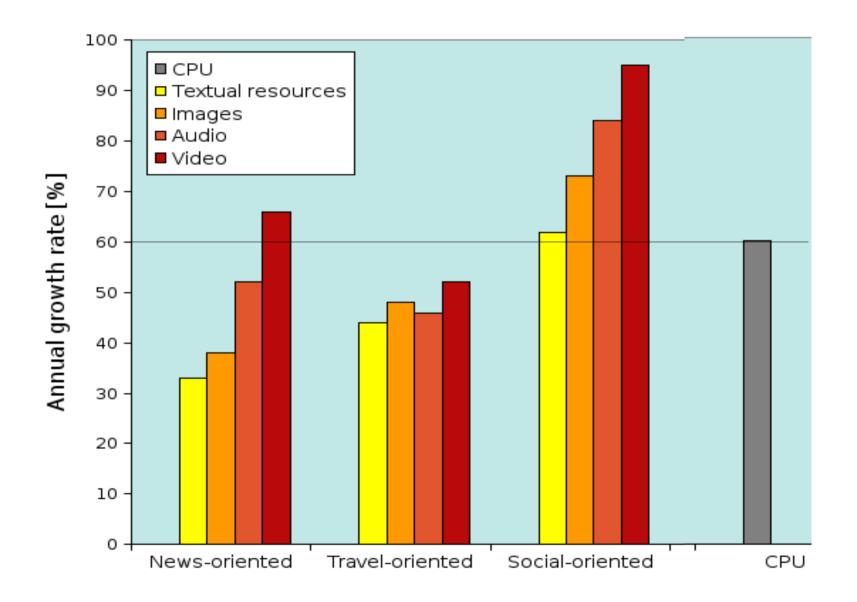


Hot set identification for Social network applications

Michele Colajanni Claudia Canali <u>Riccardo Lancellotti</u>

University of Modena and Reggio Emilia



- Community-based services
 - Social networking: support for user interaction be the killer of future Web
 - Rich-media content
 - Presence of Mobile User access

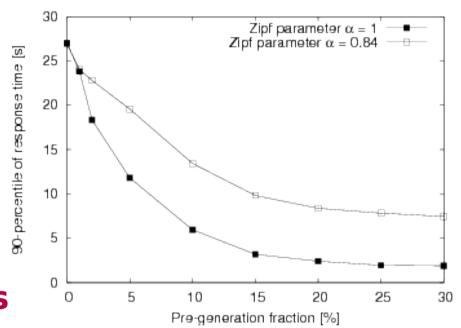
Workload evolution in the next five years

Computational demand will grow faster than CPU power (Moore's Law)

Expected growth of computational demands

IEEE Compsac 2009

4


Motivations for content management

Content management

- Content replication
- Caching
- CDN delivery
- Resource pre-generation

→ Need to identify the Hot set of popular resources

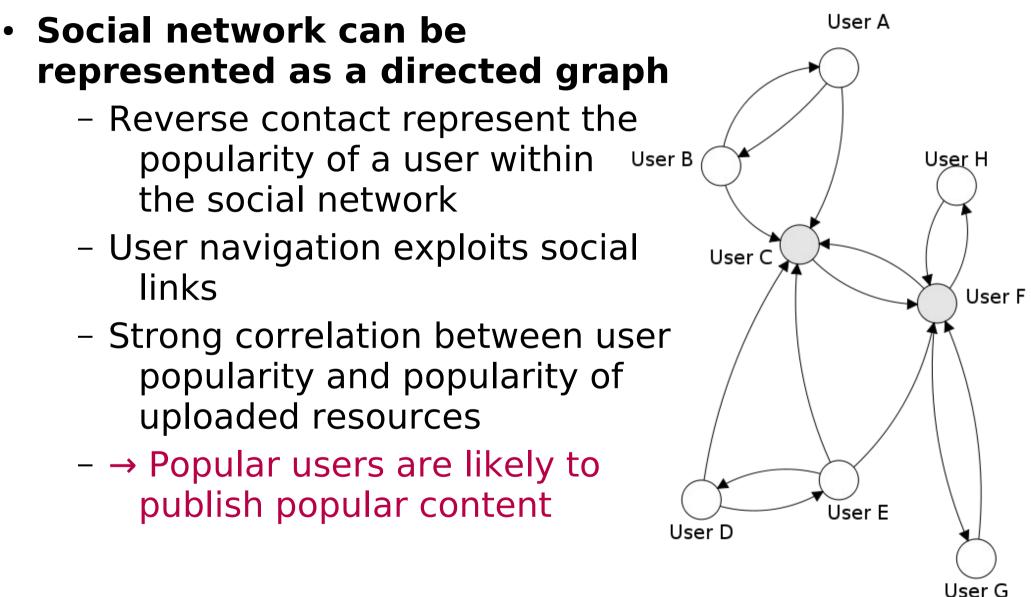
- Variability in workload characteristics
- Rapid variations in access patterns
- Workload dynamics related to social interactions
- → Need for algorithms providing early and fast detection of popular resources.
- → Stable performance are not an optional

Proposal: Algorithms for Hot set identification

- The algorithm must identify the set HS(t)
 - Hot set is evaluated periodically with interval Δt
 - HS(t) will receive the highest number of accesses in the interval [t, t+ Δ t]
 - HS(t) subset of R(t), working set at time t
- An algorithm must:
 - Estimate $p_r(t)$, where $p_r(t)$ is the popularity of resource r in interval [t, t+ Δt]
 - Sort R(t) according to pr(t)
- → HS(t) is the top fraction of sorted set R(t)

- Critical task for every algorithm
 - Evaluation of pr(t)
- Three classes of innovative algorithms
 - Predictive
 - Social-aware
 - Predictive-Social
- Comparison with existing solutions

- Focus on the time interval [t-∆t, t]
 - dr(t) is the number of access to resource r in interval [t-\Deltat, t]
- Access frequency as a measure of resource popularity
 - $pr(t) = dr(t)/\Delta t$
- Similar to frequency-based algorithms already used for cache replacement


. . .

- History of past accesses to resource r represented as a time series:
 - $Dr(t) = \{ dr(t), dr(t-\Delta t), ..., dr(t-(n-1)\Delta t) \}$
 - $d_r(t)$ is number of accesses to resource r in interval [t- Δt , t], $d_r(t-\Delta t)$ refer to [t- $2\Delta t$, t- Δt],
- Use of an EWMA model for prediction:
 - $dr^{*}(t,t+\Delta t) = \gamma dr^{*}(t,t+\Delta t) + (1-\gamma)dr(t)$
 - γ =2/n, where n is the time series length
- Other prediction models are possible

Social-aware algorithms

- Popularity estimation based on user reverse contacts
 - cr(t) connection degree of user that uploaded resource r
 - c_{max}(t) maximum connection degree
- The model includes also the effect of resource aging
 - ar(t) age of resource r (time since resource upload)
 - $p_r(t) = C_r(t)/(C_{max}(t) a_r(t))$

Predictive-Social algorithms

- Most innovative class of algorithms
 - Merges information from two sources:
 - Prediction
 - Social information
- Need for a reliable way to merge two completely different sets of data
 - Different value ranges
 - Different probability distributions
- Use of a robust weighting function
 - Two-sided quartile weighted median
 - Given distribution P(t):
 - $QWM(P(t)) = (Q_{25}(P(t)) + 2Q_{50}(P(t)) + Q_{75}(P(t)))/4$

Predictive-Social algorithms

 Merging social-aware and predictive information Predictive Social-aware estimation (t) estimation (t) $- p_r P(t) \rightarrow predictive$ Normalization Normalization $- prS(t) \rightarrow social$ Pr,social(t) Pr,predictive(t) QWM QWM $-\delta(t) \rightarrow weight$ QWM(Ppredictive(t)) OWM(Psocial(t)) Linear combination • That is: Pr(t) $-pr(t)=\delta(t) prP(t) + (1-\delta(t)) prS(t)$ $-\delta(t) = QWM(PS(t))/(QWM(PS(t)) + QWM(PP(t)))$

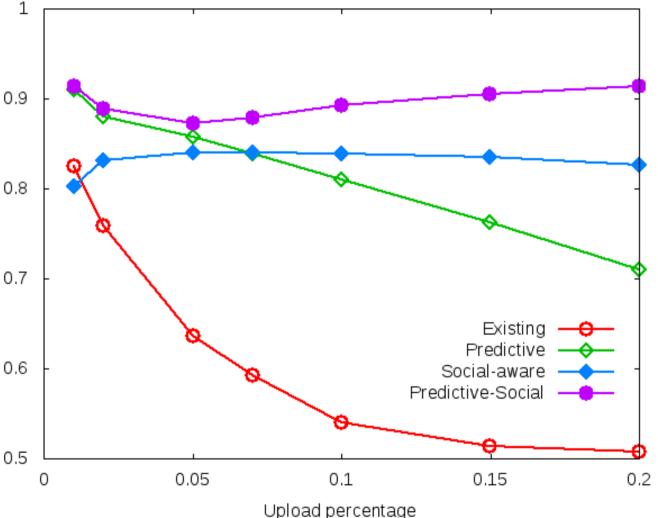
Experimental setup

Simulation based on Omnet++ framework

- User population up to 20000 units
- Average of 100 requests/sec
- 12 hours of simulated time
- $\Delta t=20$ minutes
- Main metric: accuracy= $|HS(t) \cap HS^{*}(t)|/|HS^{*}(t)|$

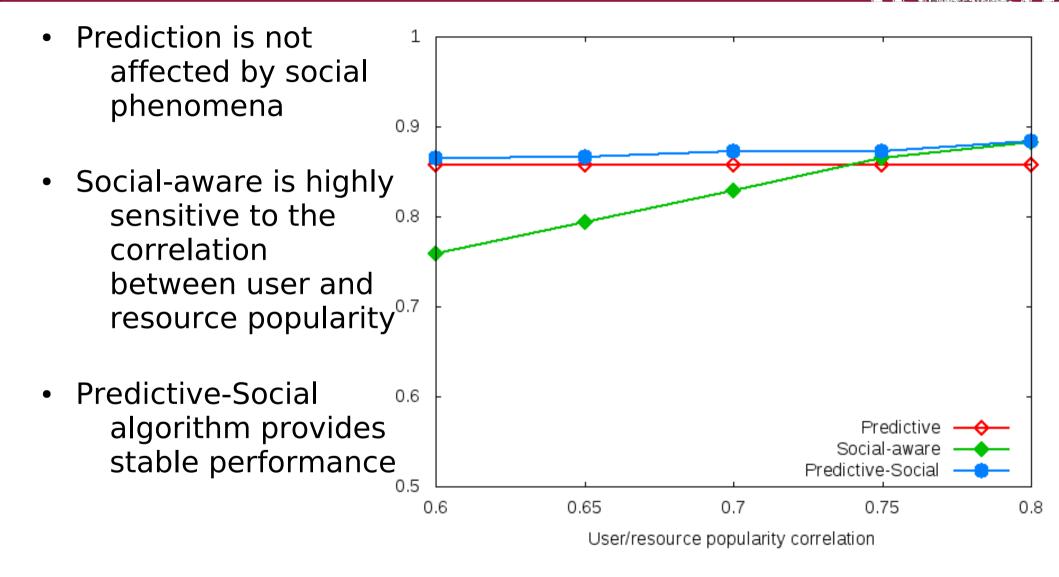
Parameter	Range	Default
Hot fraction [%]	5%-30%	20%
Upload percentage [%]	1%-20%	5%
User/resource popularity correlation	0.6-0.8	0.7

Performance evaluation


hot set size

 Existing algorithms can be improved 0.9 Predictive and socialaware algorithms provide significant 0.8 improvement 0.7 Merging prediction and social information 0.6 Existina provides further Predictive Social-aware benefits Predictive-Social 0.5 0.1 0.15 0.25 0.05 0.2 0.3 Results are similar for Hot fraction every considered

→ Need to evaluate performance stability


Sensitivity to workload dynamics

- Existing algorithms cannot cope with large amount of uploads
- Prediction is highly 0.8 sensitive to upload percentage
- Social-aware algorithm is not sensitive to workload dynamics
- Predictive-Social algorithm provides stable performance

IEEE Compsac 2009

Sensitivity to social parameters

Conclusions

- Content management will be fundamental for future social network applications
 - Need to identify the Hot set
 - Must cope with novel challenges (social interaction, short resource lifespan, ...)
- Need for high accuracy and stable performance
- Three classes of algorithms
 - Predictive \rightarrow sensitive to workload dynamics
 - Social-aware \rightarrow sensitive to social dynamics
 - Predictive-Social \rightarrow stable results
- Future work
 - Experiments with real social network traces (any help is appreciated)

Hot set identification for Social network applications

Michele Colajanni, Claudia Canali <u>Riccardo Lancellotti</u>

riccardo.lancellotti@unimore.it

University of Modena and Reggio Emilia