
A distributed architecture to
support infomobility services

Claudia Canali Riccardo Lancellotti

University of Modena
and Reggio Emilia

2

Motivation

● Web 1.0

– Static Web pages
– Information repository
– Limited interactivity

● Infomobility 1.0

– Static maps

– Basic navigation support

– No interactivity

– Car-oriented services

● Web 2.0
– Dynamic Web-based

services

– Personalized services

– Collaborative services

– High interactivity

● Infomobility 2.0
– Collaborative infomobility

services

– Personalized services

– High interactivity (wireless
connections)

– Services oriented to every
means of transportation

Examples of Infomobility 2.0 services
● Always up-to-date maps (on-demand map download)
● Dynamic exchange among users of time dependent

Geo-referenced data

– Real-time POI sharing
– Geo-referenced bulletin boards
– Maps updated by the users for the users (Wikimaps)

● On-the-fly user feedback analysis to extract information

– Automatic detection of delays, traffic jams depending on
user position/speed information

– The infomobilty system does not rely only on external data
sources

Examples of Infomobility 2.0 services
● Always up-to-date maps (on-demand map download)
● Dynamic exchange among users of time dependent

Geo-referenced data

– Real-time POI sharing
– Geo-referenced bulletin boards
– Maps updated by the users for the users (Wikimaps)

● On-the-fly user feedback analysis to extract information

– Automatic detection of delays, traffic jams depending on
user position/speed information

– The infomobilty system does not rely only on external data
sources

Innovative services

Require/
Are enabled

New architectures

Architecture requirements

● Interactions with the
user

● Management of
information

● Interaction with
external data sources

● Key requirements:

– User data privacy

– Data consistency

– Service performance

– Service availability

External
data

sources

Geographic
data, maps

Support
Info

User
Info

● Authentication/Accounting
● Route calculation
● Information requests
● Notification

Architecture

Centralized architecture

● User data privacy → OK
● Data consistency → OK
● Service performance

→ Possible bottlenecks

– preliminary experiments with Web
services: CPU, network, sockets

● Service availability
→ Single points of failure

– central node, first mile, DoS attacks

External
data

sources

Fully distributed architecture

● User data privacy
→ Expensive to guarantee high
security level for every node

● Data consistency
→ Critical when # of nodes is high

● Service performance → OK
● Service availability → OK

– Function replication

Possible solution
→ hybrid architecture

External
data

sources

Hybrid solution: Two-level architecture

External
data

sources

Central system

GIS data
Support

DB

Maps and
geographic

data for a cell

Edge nodes

User
DB

● Authentication/Accounting
● Route calculation

● Information
 requests
● Notification

Two-level architecture

● User data privacy

– Critical information only on central system
– Use of temporarily IDs for interaction with edge nodes

● Data consistency

– Data partition on the edge nodes and on central system
● Service performance

– Central system → clustering
– Edge nodes → replicated

● Service availability

– Most interaction is with edge nodes

Prototype implementation
● System based on Web services

– Apache httpd + Tomcat
– Axis 2 as the Web service implementation
– GRASS GIS
– Mysql

● Central system: cluster of 5 nodes

– 1 Apache httpd dispatcher

– 4 Tomcat + Axis2 + GRASS
● Edge nodes: 10 nodes

– Tomcat + Axis2 + Mysql
● Support for WAN emulation

Prototype support for user navigation
1. User requests to central

system

● log in
● route request

2. Central system returns

● route description
● auth tokens for cells

3. Interaction with edge
nodes

● Information requests
● Notification (polling)

4. Feedback to the central
system (e.g., delays,
accidents, detours)

1

2

3

3

4

4

Management of user information

● User authentication only on the central system

● Central system issues a set of temporarily tokens:

– Route ID

– Expiry date

– Cell for which the token is valid

– User info: reputation,...

– Signature of the central system

● Edge nodes accept tokens as authorization credentials
● Cryptography in communication with edge nodes may

prevent replay attacks (HTTPS)

Only the central system
can determine the user

identity from the token ID

Interaction of users with edge nodes

● Requests

– Maps
– POIs

● Notifications

– New POIs
– Information with global relevance (e.g., public

transportation delays, traffic jams, accidents)
● Edge nodes aggregate information with

quorum/reputation-based filters

– User position and speed
● Automatic information extraction

Automatic extraction of information:
edge node prototype implementation

Warning to
central system

Warning
DB

Traffic Jam
detection

User Speed
aggregation

Speed limits
Road characteristics

Mobile users
by car

Train delay
detection

Train expected
position

User postion
aggregation

Train
schedule

Mobile users
by train

User speed

User
position

Conclusions

● Infomobility 2.0 → , collaboration, personalization
interactivity

● Centralized and fully distributed architectures are not
suitable for infomobility services

● Proposal: two-level architecture to support infomobility
services

– Compromise between fully distributed and centralized
architectures

● Prototype based on Web services

A distributed architecture to
support infomobility services

Claudia Canali Riccardo Lancellotti

University of Modena
and Reggio Emilia

Frattaglie

Requirements for the architecture

● High performance and scalability
● High availability

– No bottlenecks

– No single points of failure

● User privacy

– High security

– Access control,
frequent security audit

Highly distributed
architecture

Centralized
architecture

Hybrid,
architecture

with
two-levels

Requirements for the architecture

● High performance and scalability

● High availability

– No bottlenecks
– No single points of failure

● User privacy

– High security
– Access control, frequent security audit

Architectural alternatives

● Centralized architecture

– Privacy → OK
– Performance and scalability → Possible bottlenecks
– Availability → Single Point of failure

● Completely distributed architecture

– Performance and scalability → OK

– Availability → OK

– Privacy → High security in every node is expensive
● We introduce a new Two-level architecture

Details on the central system
● Highly controlled environment

● Computationally powerful (Cluster)

● Functions of the central system

– Calculation of the user route

– Authentication of the users

– Accounting (pay-per-user services)

– Generation of auth tokens for the interaction with edge servers

– Access to external data sources (e.g., traffic status,
transportation booking services)

● Data stored on the central system

– Geographic data for the computation of user routes (GIS)

– User preferences

– Additional databases (e.g. public transportation schedules)

Details on the edge nodes
● Highly distributed
● Functions of the edge nodes

– Servicing user request for geographic data (e.g., nearby
POIs, maps)

– Updating geographic data based on user-supplied
informations (e.g., new POIs, detours, traffic jams, ...)

– Extraction of information from user behavior

– Aggregation and notification to central system of
information with global relevance

● Data stored on the edge nodes (only related to the cell)

– Maps, POIs, speed limits and other Geographic data about
the cell (and possibly about nearby cells)

– Additional databases (e.g. public transportation schedules)

The Client device

● Portable device (e.g, handheld device, not limited to
car-based travels)

● Wireless connectivity (GPRS, UMTS, WiMax, ...)
● GPS support
● No need for large storage (maps are downloaded as

needed)
● Support for interaction based on Web services
● User interface may exploit other Web-based

technologies (e.g., Ajax)

Requirements for the architecture
● High performance, scalability

– High number of edge nodes

– Central system only for few, critical operations
● High availability

– High number of edge nodes

– Data replication allows an edge node to “take over”
nearby cells in case of failure

● Privacy

– Central system is secure

– User-related information are stored only on the central
system

– Use of temporarily ID for user interaction with edge
nodes

