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Motivation

● Web 1.0

– Static Web pages
– Information repository
– Limited interactivity

● Infomobility 1.0

– Static maps

– Basic navigation support

– No interactivity

– Car-oriented services

● Web 2.0
– Dynamic Web-based 

services

– Personalized services

– Collaborative services

– High interactivity

● Infomobility 2.0
– Collaborative infomobility 

services

– Personalized services

– High interactivity (wireless 
connections)

– Services oriented to every 
means of transportation



Examples of Infomobility 2.0 services
● Always up-to-date maps (on-demand map download)
● Dynamic exchange among users of time dependent 

Geo-referenced data

– Real-time POI sharing
– Geo-referenced bulletin boards
– Maps updated by the users for the users (Wikimaps)

● On-the-fly user feedback analysis to extract information

– Automatic detection of delays, traffic jams depending on 
user position/speed information

– The infomobilty system does not rely only on external data 
sources
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Architecture requirements

● Interactions with the 
user

● Management of 
information

● Interaction with 
external data sources

● Key requirements:

– User data privacy

– Data consistency

– Service performance

– Service availability

External
data 

sources

Geographic 
data, maps

Support
Info

User
Info

● Authentication/Accounting
● Route calculation
● Information requests
● Notification

Architecture



Centralized architecture

● User data privacy → OK
● Data consistency → OK
● Service performance 

→ Possible bottlenecks

– preliminary experiments with Web 
services: CPU, network, sockets

● Service availability
→ Single points of failure

– central node, first mile, DoS attacks

External
data 

sources



Fully distributed architecture

● User data privacy 
→ Expensive to guarantee high 
security level for every node

● Data consistency 
→ Critical when # of nodes is high

● Service performance → OK
● Service availability → OK

– Function replication

Possible solution 
→ hybrid architecture

External
data 

sources



Hybrid solution: Two-level architecture
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Two-level architecture

● User data privacy

– Critical information only on central system
– Use of temporarily IDs for interaction with edge nodes

● Data consistency

– Data partition on the edge nodes and on central system
● Service performance

– Central system → clustering
– Edge nodes → replicated

● Service availability

– Most interaction is with edge nodes



Prototype implementation
● System based on Web services

– Apache httpd + Tomcat
– Axis 2 as the Web service implementation
– GRASS GIS
– Mysql

● Central system: cluster of 5 nodes

– 1 Apache httpd dispatcher 

– 4 Tomcat + Axis2 + GRASS
● Edge nodes: 10 nodes

– Tomcat + Axis2 + Mysql
● Support for WAN emulation



Prototype support for user navigation
1. User requests to central 

system

● log in 
● route request

2. Central system returns

● route description
● auth tokens for cells

3. Interaction with edge 
nodes

● Information requests
● Notification (polling)

4. Feedback to the central 
system (e.g., delays, 
accidents, detours)
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Management of user information

● User authentication only on the central system

● Central system issues a set of temporarily tokens:

– Route ID

– Expiry date

– Cell for which the token is valid

– User info: reputation,...

– Signature of the central system

● Edge nodes accept tokens as authorization credentials
● Cryptography in communication with edge nodes may 

prevent replay attacks (HTTPS)

Only the central system
can determine the user

identity from the token ID



Interaction of users with edge nodes

● Requests

– Maps
– POIs

● Notifications

– New POIs
– Information with global relevance (e.g., public 

transportation delays, traffic jams, accidents)
● Edge nodes aggregate information with 

quorum/reputation-based filters

– User position and speed
● Automatic information extraction



Automatic extraction of information: 
edge node prototype implementation
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Conclusions

● Infomobility 2.0 → , collaboration, personalization 
interactivity

● Centralized and fully distributed architectures are not 
suitable for infomobility services

● Proposal: two-level architecture to support infomobility 
services

– Compromise between fully distributed and centralized 
architectures

● Prototype based on Web services
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Requirements for the architecture

● High performance and scalability
● High availability

– No bottlenecks

– No single points of failure

● User privacy

– High security

– Access control, 
frequent security audit

Highly distributed
architecture

Centralized
architecture

Hybrid,
architecture

with 
two-levels



Requirements for the architecture

● High performance and scalability

● High availability

– No bottlenecks
– No single points of failure

● User privacy

– High security
– Access control, frequent security audit



Architectural alternatives

● Centralized architecture

– Privacy → OK
– Performance and scalability → Possible bottlenecks
– Availability → Single Point of failure

● Completely distributed architecture

– Performance and scalability → OK

– Availability → OK

– Privacy → High security in every node is expensive
● We introduce a new Two-level architecture



Details on the central system
● Highly controlled environment

● Computationally powerful (Cluster)

● Functions of the central system

– Calculation of the user route

– Authentication of the users 

– Accounting (pay-per-user services)

– Generation of auth tokens for the interaction with edge servers

– Access to external data sources (e.g., traffic status, 
transportation booking services)

● Data stored on the central system

– Geographic data for the computation of user routes (GIS)

– User preferences

– Additional databases (e.g. public transportation schedules)



Details on the edge nodes
● Highly distributed
● Functions of the edge nodes

– Servicing user request for geographic data (e.g., nearby 
POIs, maps)

– Updating geographic data based on user-supplied 
informations (e.g., new POIs, detours, traffic jams, ...)

– Extraction of information from user behavior

– Aggregation and notification to central system of 
information with global relevance

● Data stored on the edge nodes (only related to the cell)

– Maps, POIs, speed limits and other Geographic data about 
the cell (and possibly about nearby cells)

– Additional databases (e.g. public transportation schedules)



The Client device

● Portable device (e.g, handheld device, not limited to 
car-based travels)

● Wireless connectivity (GPRS, UMTS, WiMax, ...)
● GPS support
● No need for large storage (maps are downloaded as 

needed)
● Support for interaction based on Web services
● User interface may exploit other Web-based 

technologies (e.g., Ajax)



Requirements for the architecture
● High performance, scalability

– High number of edge nodes

– Central system only for few, critical operations
● High availability

– High number of edge nodes

– Data replication allows an edge node to “take over” 
nearby cells in case of failure

● Privacy

– Central system is secure

– User-related information are stored only on the central 
system

– Use of temporarily ID for user interaction with edge 
nodes


