A distributed architecture to support infomobility services

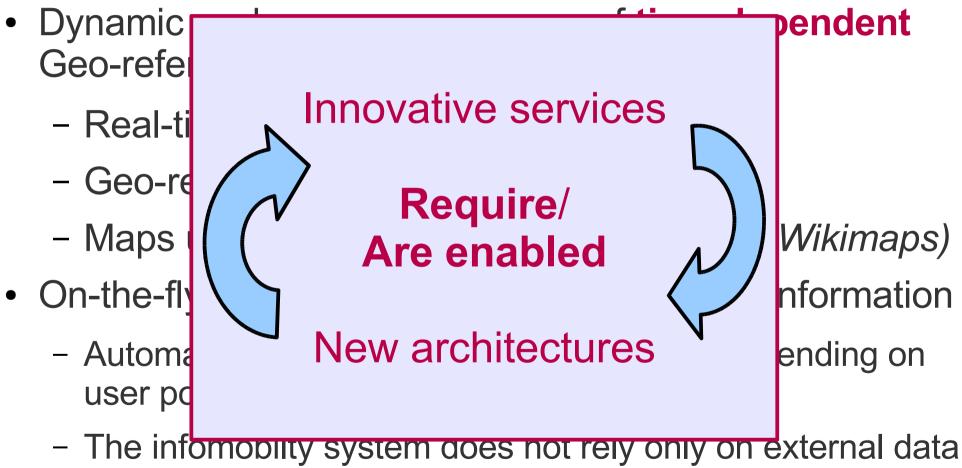
Claudia Canali Riccardo Lancellotti

University of Modena and Reggio Emilia

Motivation

- Web 1.0
 - Static Web pages
 - Information repository
 - Limited interactivity

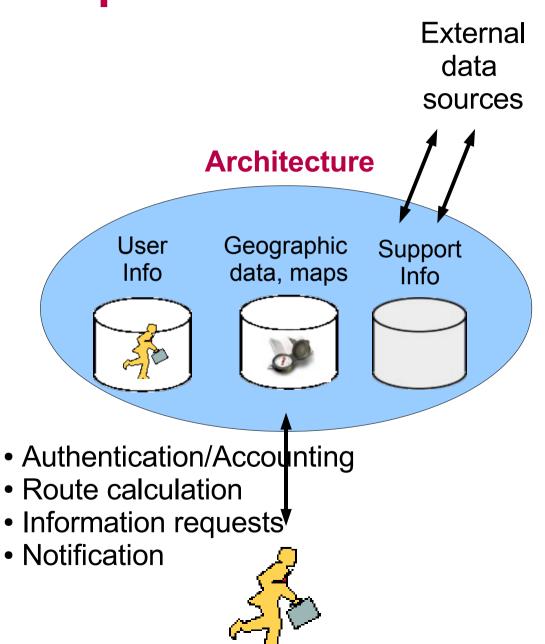
- Infomobility 1.0
 - Static maps
 - Basic navigation support
 - No interactivity
 - Car-oriented services


- Web 2.0
 - Dynamic Web-based services
 - Personalized services
 - Collaborative services
 - High interactivity
- Infomobility 2.0
 - Collaborative infomobility services
 - Personalized services
 - High interactivity (wireless connections)
 - Services oriented to every means of transportation

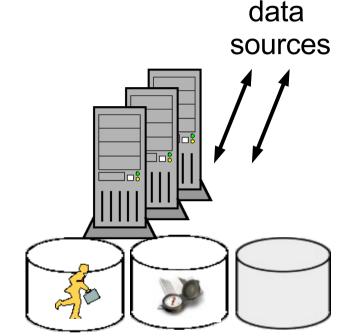
Examples of Infomobility 2.0 services

- Always up-to-date maps (on-demand map download)
- Dynamic exchange among users of time dependent Geo-referenced data
 - Real-time POI sharing
 - Geo-referenced bulletin boards
 - Maps updated by the users for the users (Wikimaps)
- On-the-fly user feedback analysis to extract information
 - Automatic detection of delays, traffic jams depending on user position/speed information
 - The infomobility system does not rely only on external data sources

Examples of Infomobility 2.0 services


• Always up-to-date maps (on-demand map download)

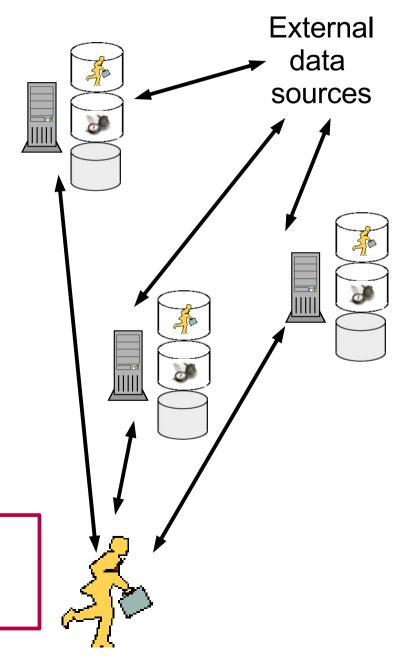
 The infomobility system does not rely only on external data sources


Architecture requirements

- Interactions with the user
- Management of information
- Interaction with
 external data sources
- Key requirements:
 - User data privacy
 - Data consistency
 - Service performance
 - Service availability

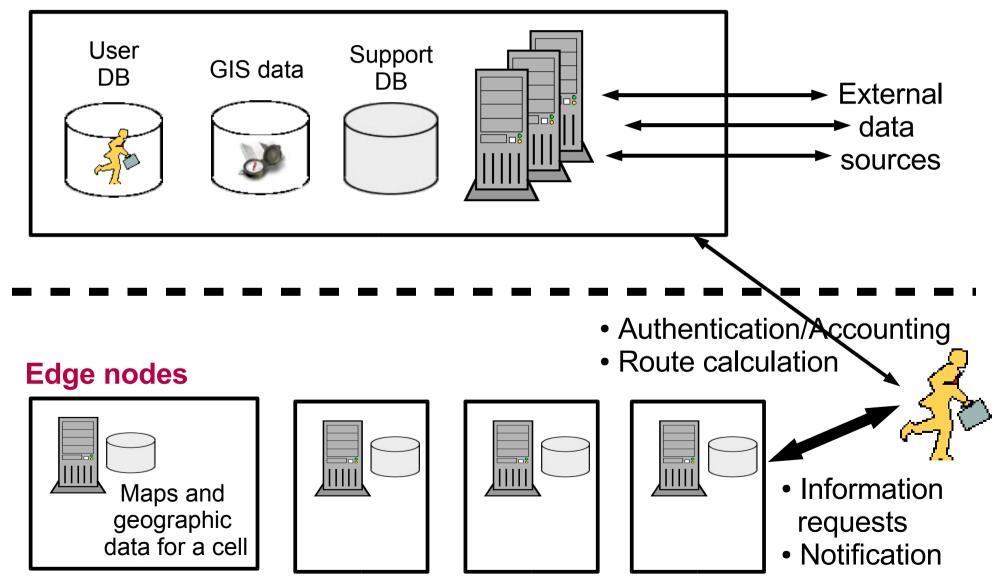
Centralized architecture

- User data privacy \rightarrow OK
- Data consistency \rightarrow OK
- Service performance \rightarrow Possible bottlenecks
 - preliminary experiments with Web services: CPU, network, sockets
- Service availability \rightarrow Single points of failure
 - central node, first mile, DoS attacks


External

Fully distributed architecture

- User data privacy

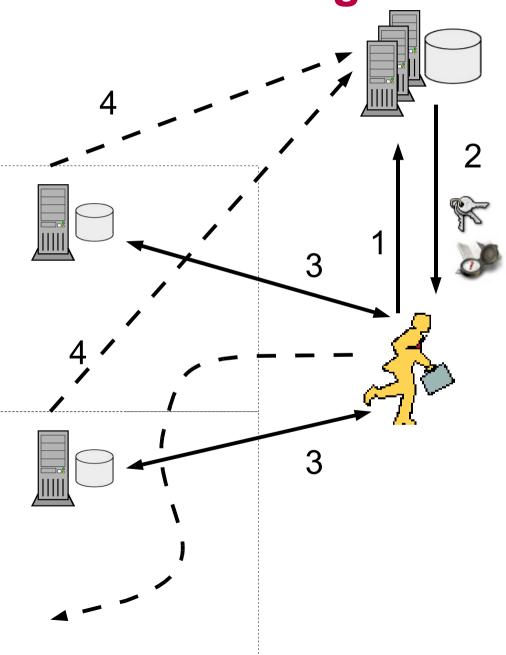

 → Expensive to guarantee high security level for every node
- Data consistency
 → Critical when # of nodes is high
- Service performance \rightarrow OK
- Service availability \rightarrow OK
- Function replication

Possible solution → hybrid architecture

Hybrid solution: Two-level architecture

Central system

Two-level architecture


- User data privacy
 - Critical information only on central system
 - Use of temporarily IDs for interaction with edge nodes
- Data consistency
 - Data partition on the edge nodes and on central system
- Service performance
 - Central system \rightarrow clustering
 - Edge nodes \rightarrow replicated
- Service availability
 - Most interaction is with edge nodes

Prototype implementation

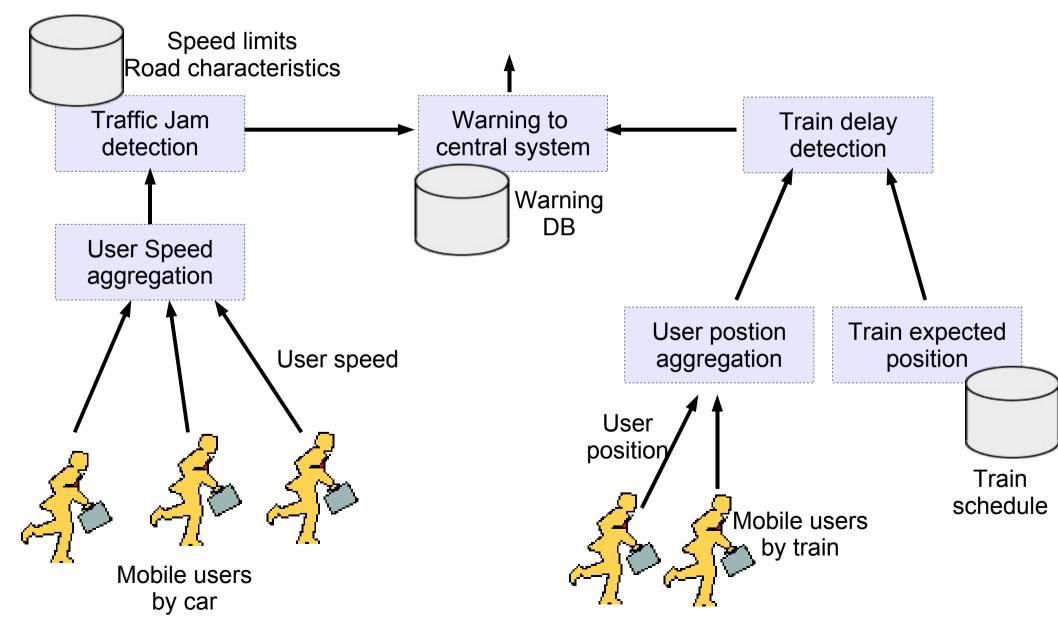
- System based on Web services
 - Apache httpd + Tomcat
 - Axis 2 as the Web service implementation
 - GRASS GIS
 - Mysql
- Central system: cluster of 5 nodes
 - 1 Apache httpd dispatcher
 - 4 Tomcat + Axis2 + GRASS
- Edge nodes: 10 nodes
 - Tomcat + Axis2 + Mysql
- Support for WAN emulation

Prototype support for user navigation

- 1. User requests to central system
 - log in
 - route request
- 2. Central system returns
 - route description
 - auth tokens for cells
- 3. Interaction with edge nodes
 - Information requests
 - Notification (polling)
- 4. Feedback to the central system (e.g., delays, accidents, detours)

Management of user information

- User authentication only on the central system
- Central system issues a set of temporarily tokens:
 - Route ID
 - Expiry date
 - Cell for which the token is valid
 - User info: reputation,...
 - Signature of the central system


Only the central system can determine the user identity from the token ID

- Edge nodes accept tokens as authorization credentials
- Cryptography in communication with edge nodes may prevent replay attacks (HTTPS)

Interaction of users with edge nodes

- Requests
 - Maps
 - POIs
- Notifications
 - New POIs
 - Information with global relevance (e.g., public transportation delays, traffic jams, accidents)
 - Edge nodes aggregate information with quorum/reputation-based filters
 - User position and speed
 - Automatic information extraction

Automatic extraction of information: edge node prototype implementation

Conclusions

- Infomobility 2.0 \rightarrow , collaboration, personalization interactivity
- Centralized and fully distributed architectures are not suitable for infomobility services
- Proposal: two-level architecture to support infomobility services
 - Compromise between fully distributed and centralized architectures
- Prototype based on Web services

A distributed architecture to support infomobility services

Claudia Canali Riccardo Lancellotti

University of Modena and Reggio Emilia

Frattaglie

Requirements for the architecture

Centralized

architecture

- High performance and scalability
- High availability
 - No bottlenecks
 - No single points of failure
- User privacy
 - High security
 - Access control, frequent security audit

architecture

Highly distributed

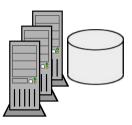
Hybrid,

architecture

with

two-levels

Requirements for the architecture


- High performance and scalability
- High availability
 - No bottlenecks
 - No single points of failure
- User privacy
 - High security
 - Access control, frequent security audit

Architectural alternatives

- Centralized architecture
 - Privacy \rightarrow OK
 - Performance and scalability \rightarrow Possible bottlenecks
 - Availability \rightarrow Single Point of failure
- Completely distributed architecture
 - Performance and scalability \rightarrow OK
 - Availability \rightarrow OK
 - Privacy \rightarrow High security in every node is expensive
- We introduce a new Two-level architecture

Details on the central system

- Highly controlled environment
- Computationally powerful (Cluster)
- Functions of the central system
 - Calculation of the user route
 - Authentication of the users
 - Accounting (pay-per-user services)
 - Generation of auth tokens for the interaction with edge servers
 - Access to external data sources (e.g., traffic status, transportation booking services)
- Data stored on the central system
 - Geographic data for the computation of user routes (GIS)
 - User preferences
 - Additional databases (e.g. public transportation schedules)

Details on the edge nodes

- Highly distributed
- Functions of the edge nodes
 - Servicing user request for geographic data (e.g., nearby POIs, maps)
 - Updating geographic data based on user-supplied informations (e.g., new POIs, detours, traffic jams, ...)
 - Extraction of information from user behavior
 - Aggregation and notification to central system of information with global relevance
- Data stored on the edge nodes (only related to the cell)
 - Maps, POIs, speed limits and other Geographic data about the cell (and possibly about nearby cells)
 - Additional databases (e.g. public transportation schedules)

The Client device

- Portable device (e.g, handheld device, not limited to car-based travels)
- Wireless connectivity (GPRS, UMTS, WiMax, ...)
- GPS support
- No need for large storage (maps are downloaded as needed)
- Support for interaction based on Web services
- User interface may exploit other Web-based technologies (e.g., Ajax)

Requirements for the architecture

- High performance, scalability
 - High number of edge nodes
 - Central system only for few, critical operations
- High availability
 - High number of edge nodes
 - Data replication allows an edge node to "take over" nearby cells in case of failure
- Privacy
 - Central system is secure
 - User-related information are stored only on the central system
 - Use of temporarily ID for user interaction with edge nodes