#### A Variable Neighborhood Heuristic for Facility Locations in Fog Computing

THE 8TH INTERNATIONAL CONFERENCE ON VARIABLE NEIGHBORHOOD SEARCH



Thiago Alves de Queiroz IMT, Federal University of Goiás



Claudia Canali, Riccardo Lancellotti DIEF, University of Modena and Reggio Emilia

> Manuel Iori DISMI, University of Modena and Reggio Emilia





# New Challenges

- New paradigm: Smart cities large scale sensing applications
- Several fields of application:
  - Urban applications
  - Industrial
  - Automotive
  - Healthcare
  - ...
- New scenarios: Cyber-physical systems
  - Geographically distributed sensors
  - Huge amount of information produced

# New Challenges

- $\rightarrow$  New requirements for the infrastructure
- Scalability challenge
  - Huge amount of data to transfer and process
  - Geographically distributed systems
  - Example: CPU- and bandwidth-bound applications
- Low latency challenge
  - Support for real time applications
  - Example: latency-bound applications
- Cloud computing is not enough
- (5G alone is not an answer)

# Pros and Cons of Fog

- Benefits of Fog computing
- Scalability:
  - Pre-processing offloaded to fog nodes
  - Less strain on Cloud network links
- Latency:
  - Latency-critical tasks offloaded to Fog
  - Fog nodes are closer to the edge



- New open issues:
   → new Fog infrastructure
  - Fog node deployment
  - Sensors-to fog mapping
- Joint problem

# Our Contribution

- Model for the design of Fog infrastructures
  - Based on location-allocation optimization problem
- Model decisions:
  - How many fog nodes do we need?
  - Which Fog nodes (among a set) turn on?
  - How to map sensors over fog nodes?
- Double optimization goal
  - Reduce infrastructure cost
  - Optimize performance
- Use of SLA constraints

# Mathematical Model

| Model parameters   |                                                                                      |  |  |  |  |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| S                  | Set of sensors                                                                       |  |  |  |  |  |  |  |  |  |
| ${\mathcal F}$     | Set of fog nodes                                                                     |  |  |  |  |  |  |  |  |  |
| С                  | Set of cloud data centers                                                            |  |  |  |  |  |  |  |  |  |
| $\lambda_i$        | Outgoing data rate from sensor <i>i</i>                                              |  |  |  |  |  |  |  |  |  |
| $\lambda_j$        | Incoming data rate at fog node j                                                     |  |  |  |  |  |  |  |  |  |
| $1/\mu_j$          | Processing time at fog node $j$                                                      |  |  |  |  |  |  |  |  |  |
| $\delta_{ij}$      | Communication latency between sensor $i$ and fog $j$                                 |  |  |  |  |  |  |  |  |  |
| $\delta_{jk}$      | Communication latency between fog $j$ and cloud $k$                                  |  |  |  |  |  |  |  |  |  |
| $c_j$              | Cost for locating a fog node at position $j$ (or for keeping the fog node turned on) |  |  |  |  |  |  |  |  |  |
|                    | Model indices                                                                        |  |  |  |  |  |  |  |  |  |
| i                  | Index for a sensor                                                                   |  |  |  |  |  |  |  |  |  |
| j                  | Index for a fog node                                                                 |  |  |  |  |  |  |  |  |  |
| k                  | Index for a cloud data center                                                        |  |  |  |  |  |  |  |  |  |
| Decision variables |                                                                                      |  |  |  |  |  |  |  |  |  |
| $E_j$              | Location of fog node j                                                               |  |  |  |  |  |  |  |  |  |
| $x_{ij}$           | Allocation of sensor $i$ to fog $j$                                                  |  |  |  |  |  |  |  |  |  |
| $y_{jk}$           | Allocation of fog node $j$ to cloud $k$                                              |  |  |  |  |  |  |  |  |  |

# Mathematical Model

- Objective function
  - $\rightarrow$  Cost for fog nodes
  - $\rightarrow$  Response time
- Contributions to response time:
  - Sensor  $\rightarrow$  Fog avg net delay
  - Fog  $\rightarrow$  Cloud avg net delay
  - Fog processing time
- Caveat: definition of  $\lambda_{j}$
- Main constraints:
  - Response time < SLA</li>
  - Load on nodes

$$\begin{split} C &= \sum_{j \in \mathcal{F}} c_j E_j \\ T_R &= T_{netSF} + T_{netFC} + T_{proc} \end{split}$$

$$\begin{split} T_{netsf} &= \frac{1}{\sum_{i \in \mathcal{S}} \lambda_i} \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{F}} \lambda_i x_{i,j} \delta_{i,j} \\ T_{netfc} &= \frac{1}{\sum_{j \in \mathcal{F}} \lambda_j} \sum_{j \in \mathcal{F}} \sum_{k \in \mathcal{C}} \lambda_j y_{j,k} \delta_{j,k} \\ T_{proc} &= \frac{1}{\sum_{j \in \mathcal{F}} \lambda_j} \sum_{j \in \mathcal{F}} \frac{\lambda_j}{\mu_j - \lambda_j} \\ \hline \lambda_j &= \sum_{i \in \mathcal{S}} x_{i,j} \cdot \lambda_i \\ T_R &\leq T_{SLA} \\ \lambda_j &< E_j \mu_j, \quad \forall j \in \mathcal{F} \end{split} \qquad \begin{aligned} \sum_{k \in \mathcal{C}} y_{jk} = E_j, \qquad \forall j \in \mathcal{F} \end{aligned}$$

# Variable Neighborhood Search

 $x \leftarrow$  an initial solution generated by a random constructive heuristic; while the stopping criteria are not reached **do** 

```
k \leftarrow 1:
     while k \leq K_{max} do
          x' \leftarrow random solution in the neighborhood structure N_k(x);
          x'' \leftarrow apply the local search on x';
          if f(x'') < f(x) then
           x \leftarrow x'';
               k \leftarrow 1:
                                                                 Local Search: Best improvement
          end
                                                                 M1: All possible "insertion" of sensors in fog nodes
          else k \leftarrow k + 1:
                                                                 M2: All possible "swap" of sensors in fog nodes
     end
end
```

return x;

#### Solution Representation













# **Experimental Scenario**

- Smart City scenario based on real example
  - Italian city (Modena),
  - ~180,000 inhabitants
- Traffic monitoring case
  - Sensors on streets
  - Fog nodes in public buildings
  - LoRa connections LoRa
- · Evaluation using solver
- Comparison with:
  - Complex model (CM)
  - Simplified model ( $E_i = 1$ ) (SM)





### Scenario Definition

- Parameters to describe scenarios
- Average network delay  $\,\delta\,$ 
  - Typically set to ~10ms
- Network delay / Processing time balance  $~\delta~\mu$ 
  - Scenario CPU bound or Network bound
- System load  $\rho$ 
  - Average load of fog nodes

$$\delta = \frac{\sum_{i \in S} \sum_{j \in \mathcal{F}} \delta_{i,j} + \sum_{j \in \mathcal{F}} \sum_{k \in \mathcal{C}} \delta_{j,k}}{|\mathcal{S}| \cdot |\mathcal{F}| + |\mathcal{F}| \cdot |\mathcal{C}|}$$
  
$$\delta \mu = \delta \cdot \frac{\sum_{j \in \mathcal{F}} \mu_j}{|\mathcal{F}|}$$
  
$$\rho = \frac{\sum_{i \in S} \lambda_i}{\sum_{j \in \mathcal{F}} \mu_j}$$

# Experimental Results

|              | Sim   | olified | Model   | Complex Model (Dev. CM vs. SM) |         |          |         |          | VNS (Dev. VNS vs. CM) |         |          |         |          |
|--------------|-------|---------|---------|--------------------------------|---------|----------|---------|----------|-----------------------|---------|----------|---------|----------|
| Instances    | Iter. | $Obj_1$ | $Obj_2$ | Iter.                          | $Obj_1$ | Dev. (%) | $Obj_2$ | Dev. (%) | Iter.                 | $Obj_1$ | Dev. (%) | $Obj_2$ | Dev. (%) |
| ins-0.1-0.01 | 23655 | 10      | 0,1163  | 52421                          | 2       | -80,00   | 0,2337  | 100,96   | 1                     | 2       | 0,00     | 0,2332  | -0,23    |
| ins-0.1-0.1  | 31809 | 10      | 0,1544  | 50876                          | 2       | -80,00   | 0,5520  | 257,45   | 1                     | 2       | 0,00     | 0,5305  | -3,90    |
| ins-0.1-1    | 29173 | 10      | 0,5219  | 61189                          | 2       | -80,00   | 3,7795  | 624,22   | 1                     | 2       | 0,00     | 3,2555  | -13,86   |
| ins-0.1-10   | 36088 | 10      | 4,1912  | 31853                          | 6       | -40,00   | 8,6976  | 107,52   | 1                     | 3       | -50,00   | 17,9568 | 106,46   |
| ins-0.2-0.01 | 26833 | 10      | 0,2613  | 25242                          | 3       | -70,00   | 0,6482  | 148,07   | 1                     | 3       | 0,00     | 0,6443  | -0,61    |
| ins-0.2-0.1  | 19049 | 10      | 0,3429  | 30661                          | 3       | -70,00   | 1,0125  | 195,30   | 6                     | 3       | 0,00     | 1,0125  | 0,00     |
| ins-0.2-1    | 28671 | 10      | 1,0829  | 33141                          | 3       | -70,00   | 4,9492  | 357,05   | 4                     | 3       | 0,00     | 4,5140  | -8,79    |
| ins-0.2-10   | 38641 | 10      | 8,4215  | 46185                          | 3       | -70,00   | 45,6711 | 442,31   | 1                     | 3       | 0,00     | 38,9263 | -14,77   |
| ins-0.5-0.01 | 39481 | 10      | 1,0300  | 13903                          | 6       | -40,00   | 3,1153  | 202,46   | 1                     | 6       | 0,00     | 3,1148  | -0,01    |
| ins-0.5-0.1  | 24610 | 10      | 1,2825  | 15566                          | 6       | -40,00   | 3,5829  | 179,37   | 176                   | 6       | 0,00     | 3,5344  | -1,35    |
| ins-0.5-1    | 21598 | 10      | 3,3132  | 7802                           | 7       | -30,00   | 5,9867  | 80,70    | 86                    | 6       | -14,29   | 8,1437  | 36,03    |
| ins-0.5-10   | 25093 | 10      | 21,9581 | 10851                          | 7       | -30,00   | 34,4636 | 56,95    | 315                   | 6       | -14,29   | 44,9171 | 30,33    |
| ins-0.8-0.01 | 52087 | 10      | 4,0480  | 11032                          | 9       | -10,00   | 8,3199  | 105,53   | 40                    | 9       | 0,00     | 8,3160  | -0,05    |
| ins-0.8-0.1  | 51989 | 10      | 4,4799  | 14790                          | 9       | -10,00   | 8,8266  | 97,03    | 295                   | 9       | 0,00     | 8,7628  | -0,72    |
| ins-0.8-1    | 38901 | 10      | 8,7654  | 14729                          | 9       | -10,00   | 13,1785 | 50,35    | 305                   | 9       | 0,00     | 13,2132 | 0,26     |
| ins-0.8-10   | 32297 | 10      | 44,1912 | 7335                           | 9       | -10,00   | 60,2917 | 36,43    | 455                   | 9       | 0,00     | 63,1833 | 4,80     |
| ins-0.9-0.01 | 57507 | 10      | 9,0540  | 11832                          | 10      | 0,00     | 9,0540  | 0,00     | 16                    | 10      | 0,00     | 9,0540  | 0,00     |
| ins-0.9-0.1  | 45581 | 10      | 9,5399  | 15801                          | 10      | 0,00     | 9,5399  | 0,00     | 20                    | 10      | 0,00     | 9,5399  | 0,00     |
| ins-0.9-1    | 54009 | 10      | 14,3987 | 10055                          | 10      | 0,00     | 14,3987 | 0,00     | 16                    | 10      | 0,00     | 14,3987 | 0,00     |
| ins-0.9-10   | 50609 | 10      | 62,9869 | 12502                          | 10      | 0,00     | 62,9869 | 0,00     | 50                    | 10      | 0,00     | 62,9869 | 0,00     |

#### **Experimental Results**

#### Deviation between the VNS and CM model



# Concluding Remarks

- Challenges of Fog computing
  - Selection of fog nodes and mapping of sensors
- Contribution: proposal of a model
  - Based on location-allocation optimization problem
  - Dual objective function
  - Non linear problem
- Validation of the model
  - Focus on a realistic scenario
  - Wide range of parameters considered
- Open issues
  - Heuristics (GA, Variable Neighborhood Search)
  - Dynamic scenarios

#### References

- Canali, C., Lancellotti, R.: GASP: Genetic Algorithms for Service Placement in fog computing systems. *Algorithms* 12(10) (2019).
- Farahani, R. Z., Fallah, S., Ruiz, R., Hosseini, S., Asgari, N.: OR models in urban service facility location: a critical review of applications and future developments. *European Journal of Operational Research* 276(1), 1–27 (2019).
- Hansen, P., Mladenovic´, N., Todosijevic´, R., Hanaf, S.: Variable neighborhood search: basics and variants. *EURO Journal on Computational Optimization* 5, 423–454 (2017).
- Yi, S., Li, C., Li, Q.: A survey of fog computing: Concepts, applications and issues. In: *Proc. of 2015 Workshop on Mobile Big Data*. pp. 37–42 (2015).
- Yousefpour, A., Ishigaki, G., Jue, J.P.: Fog computing: Towards minimizing delay in the internet of things. *In: 2017 IEEE International Conference on Edge Computing (EDGE)*. pp. 17–24 (2017).





*Conselho Nacional de Desenvolvimento Científico e Tecnológico* 



UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA



Programa de Pós-Graduação em Modelagem e Otimização

# Questions?

