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The advent of Cloud Computing changed 
dramatically the ICT industry

 Google, Amazon, Microsoft,  Salesforce, Oracle, SAP, 
SoftLayer, Rackspace etc…

 Cost-effective solutions
 Computational power
 Reliability 
 Auto-scaling

New business paradigms appeared on the market
 IaaS, PaaS, SaaS
 But also DaaS, BDaaS, HDaaS, etc… 
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Introduction



The growing popularity of Cloud Computing 
opens new challenges 

 Vendor lock-in 
 Design for Quality of Service (QoS) guarantees
 Managing the lifecycle of a Cloud application 
 Managing Elasticity 

 Resource Provisioning
 Self-adaptation
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Introduction: challenges



Resource Provisioning: mechanism for leasing and 
releasing virtual cloud resources to guarantee adequate 
QoS 

… it requires management solutions that support 
 Performance prediction, 
 Monitoring of Service Level Agreements (SLA), 
 Adaptive re-configuration actions.

Tools currently supplied by IaaS providers, are often too 
basic and inadequate for

  Highly variable workload, 
 Applications with a dynamic behavior characterized by 

uncertainty. 5

Introduction: resource provisioning



Proposal: a fast and effective Capacity Allocation 
technique 

 based on the Receding Horizon control strategy
 integrated within MODAClouds runtime 

platform
 that minimizes the execution costs of a Cloud 

application, 
 guaranteeing QoS constraints expressed in 

terms of average response time 
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Introduction: our approach
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Perspective of a Software-as-a-Service (SaaS) 
provider hosting his/her applications on an 
Infrastructure-as-a-Service (IaaS) provider

Applications are single tier hosted in virtual machines 
(VMs) that are dynamically instantiated by the IaaS provider

Each VM hosts a single WS application

Multiple homogeneous VMs implementing the same WS 
application can run in parallel

Problem: design 
assumptions



Problem: design 
assumptions

Each WS class hosted in a VM 
is modeled as an M/G/1 
queue in tandem with a delay 
center

SLA based on the average 
response time: every WS class 
has to provide a response time 
      lower than a threshold



IaaS providers charge software providers on an hourly basis

 reserved VMs (     time-unit cost)
 on demand VMs (    time-unit cost               )

 Time management:
 Time slots:              (5, 10 min)
 Time window:        ( 1-5            )
 Charging interval:        (60 min) 

Problem: design 
assumptions



Problem: formulation

Time unit costs

Time management

Freely available 
VMs

Workload 
prediction

CA plan



The CA problem can be formulated as: 

Subject to the conditions: 
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Problem: formulation

Response time

Total cost

limited number 
of reserved VMs 
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In a nutshell, the Capacity Allocation problem 
is solved for every time slot in         but only 
the actions concerning the first forthcoming 
time slot are enacted.

13

Receding Horizon Algorithm
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Receding Horizon Algorithm
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Scalability:

 Large set of randomly generated instances

 Daily distribution of requests from real log traces

Comparison with state of the art approaches:

 Heuristic

 Oracle with perfect knowledge of the future

Time scale analysis:

 SLA violations
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Experimental Analysis



Workload prediction
 Incoming workload has been obtained for traces of a very 

large dynamic web-based system
 Different workload for each WS class
 Prediction obtained by adding white noise to each sample
 Noise proportional to the arrival rate
 Inaccuracy increases with the time slot

Performance parameters
 Service rate
 Queueing delay 
  Reserved instances

Instance cost
 Randomly generated considering prices currently charged by 

common IaaS providers 
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Experiment Design



Traffic profiles:
 Normal workload with low noise
 Normal workload with high noise
 Spiky workload with low noise
 Spiky workload with high noise

The different levels of noise corresponds to:
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Experiment Design
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Scalability
The analysis demonstrated that our approach scales almost linearly 
with 
respect to the number of request classes. Systems up to 160 classes 
and 5 time slots can be solved in less than 200 sec. 
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Cost – Spiky traffic
• 5 minutes time 

scale

• Low noise level

Costs 
comparison



Goal: evaluate the impact of time scale on the proposed 
receding horizon algorithm 

Analyses have been supported by a discrete event 
simulator based on the Omnet++ framework created on 
purpose.

 able to capture the time-varying performance degradation 
due to resource contention via Random Environments (REs) 

Performance indicators considered: 
 SLA violation (the percentage of time slots where the 

average response time exceeds the SLA thresholds
 Dropped request (the percentage of requests dropped as a 

result of the finite queue length) 
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Time scale analysis
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Time scale analysis

The values are related to a 24 hours analysis with low noise and 
averaged over 10 executions.

A control time granularity of 5 minutes tends to provide better 
performance if compared to granularity of 10 minutes both in 
terms of SLA violations and in terms of dropped requests. 
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We proposed optimization approach to achieve fast, scalable and 
effective capacity allocation based on a fine grained time scale

Our technique is able to minimize costs in a more efficient way than 
the current state of the art

The QoS defined into the SLA is almost always respected (less than 
2% and 7 min)

Future works: 

 development of an adaptive approach able to switch 
between different time scales according to the workload 
conditions

 Test on a real prototype environment
25

Conclusions and Future 
Works
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Thank You!

Questions
?
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