
A Receding Horizon Approach
for the Runtime Management of

IaaS Cloud Systems

Danilo Ardagna, Michele Ciavotta
{danilo.ardagna, michele.ciavotta}@polimi.it

Politecnico di Milano
Riccardo Lancellotti

riccardo.lancellotti@unimore.it
Università di Modena e Reggio Emilia

www.modaclouds.eu

 Introduction

 Problem
 Problem statement and design assumption
 Receding Horizon algorithm

 Experimental Analysis

 Conclusions

2

Agenda

The advent of Cloud Computing changed
dramatically the ICT industry

 Google, Amazon, Microsoft, Salesforce, Oracle, SAP,
SoftLayer, Rackspace etc…

 Cost-effective solutions
 Computational power
 Reliability
 Auto-scaling

New business paradigms appeared on the market
 IaaS, PaaS, SaaS
 But also DaaS, BDaaS, HDaaS, etc…

3

Introduction

The growing popularity of Cloud Computing
opens new challenges

 Vendor lock-in
 Design for Quality of Service (QoS) guarantees
 Managing the lifecycle of a Cloud application
 Managing Elasticity

 Resource Provisioning
 Self-adaptation

4

Introduction: challenges

Resource Provisioning: mechanism for leasing and
releasing virtual cloud resources to guarantee adequate
QoS

… it requires management solutions that support
 Performance prediction,
 Monitoring of Service Level Agreements (SLA),
 Adaptive re-configuration actions.

Tools currently supplied by IaaS providers, are often too
basic and inadequate for

 Highly variable workload,
 Applications with a dynamic behavior characterized by

uncertainty. 5

Introduction: resource provisioning

Proposal: a fast and effective Capacity Allocation
technique

 based on the Receding Horizon control strategy
 integrated within MODAClouds runtime

platform
 that minimizes the execution costs of a Cloud

application,
 guaranteeing QoS constraints expressed in

terms of average response time

6

Introduction: our approach

 Introduction

 Problem
 Problem statement and design assumption
 Receding Horizon algorithm

 Experimental Analysis

 Conclusions

7

Agenda

Perspective of a Software-as-a-Service (SaaS)
provider hosting his/her applications on an
Infrastructure-as-a-Service (IaaS) provider

Applications are single tier hosted in virtual machines
(VMs) that are dynamically instantiated by the IaaS provider

Each VM hosts a single WS application

Multiple homogeneous VMs implementing the same WS
application can run in parallel

Problem: design
assumptions

Problem: design
assumptions

Each WS class hosted in a VM
is modeled as an M/G/1
queue in tandem with a delay
center

SLA based on the average
response time: every WS class
has to provide a response time
 lower than a threshold

IaaS providers charge software providers on an hourly basis

 reserved VMs (time-unit cost)
 on demand VMs (time-unit cost)

 Time management:
 Time slots: (5, 10 min)
 Time window: (1-5)
 Charging interval: (60 min)

Problem: design
assumptions

Problem: formulation

Time unit costs

Time management

Freely available
VMs

Workload
prediction

CA plan

The CA problem can be formulated as:

Subject to the conditions:

12

Problem: formulation

Response time

Total cost

limited number
of reserved VMs

Optimizer
Optimization

Model

Cloud
Application

Solve

Optimal
solution

Clock

First slot configuration

Receding Horizon controller

Predicted workload

Monitoring
Platform

Update Model
Parameters

IaaS
Interface

(r 1
k , d

1
k)

(b⇤ 1
k , . . . ,

b⇤ n w
k)

In a nutshell, the Capacity Allocation problem
is solved for every time slot in but only
the actions concerning the first forthcoming
time slot are enacted.

13

Receding Horizon Algorithm

14

Receding Horizon Algorithm

 Introduction

 Problem
 Problem statement and design assumption
 Receding Horizon algorithm

 Experimental Analysis

 Conclusions

15

Agenda

Scalability:

 Large set of randomly generated instances

 Daily distribution of requests from real log traces

Comparison with state of the art approaches:

 Heuristic

 Oracle with perfect knowledge of the future

Time scale analysis:

 SLA violations

16

Experimental Analysis

Workload prediction
 Incoming workload has been obtained for traces of a very

large dynamic web-based system
 Different workload for each WS class
 Prediction obtained by adding white noise to each sample
 Noise proportional to the arrival rate
 Inaccuracy increases with the time slot

Performance parameters
 Service rate
 Queueing delay
 Reserved instances

Instance cost
 Randomly generated considering prices currently charged by

common IaaS providers
17

Experiment Design

Traffic profiles:
 Normal workload with low noise
 Normal workload with high noise
 Spiky workload with low noise
 Spiky workload with high noise

The different levels of noise corresponds to:

18

Experiment Design

19

Scalability
The analysis demonstrated that our approach scales almost linearly
with
respect to the number of request classes. Systems up to 160 classes
and 5 time slots can be solved in less than 200 sec.

180

230

280

330

380

430

480

530

1 2 3 4

Co
st

[$
]

Tw

S-t Algorithm

Heu (40,50)

Heu (50,60)

Heu (60,80)

Oracle

Cost – Normal traffic
• 10 minutes time

scale

• Low noise level

Costs
comparison

180

280

380

480

580

680

780

880

1 2 3 4 5

Co
st

[$
]

Tw

S-t Algorithm

Heu (40,50)

Heu (50,60)

Heu (60,80)

Oracle

21

Cost – Spiky traffic
• 5 minutes time

scale

• Low noise level

Costs
comparison

Goal: evaluate the impact of time scale on the proposed
receding horizon algorithm

Analyses have been supported by a discrete event
simulator based on the Omnet++ framework created on
purpose.

 able to capture the time-varying performance degradation
due to resource contention via Random Environments (REs)

Performance indicators considered:
 SLA violation (the percentage of time slots where the

average response time exceeds the SLA thresholds
 Dropped request (the percentage of requests dropped as a

result of the finite queue length)

22

Time scale analysis

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

RE
SP

O
N
SE

'T
IM

E'
(m

s)
'

TIME'(min)'

0"""10"""20

23

Time scale analysis

The values are related to a 24 hours analysis with low noise and
averaged over 10 executions.

A control time granularity of 5 minutes tends to provide better
performance if compared to granularity of 10 minutes both in
terms of SLA violations and in terms of dropped requests.

 Introduction

 Problem
 Problem statement and design assumption
 Receding Horizon algorithm

 Experimental Analysis

 Conclusions

24

Agenda

We proposed optimization approach to achieve fast, scalable and
effective capacity allocation based on a fine grained time scale

Our technique is able to minimize costs in a more efficient way than
the current state of the art

The QoS defined into the SLA is almost always respected (less than
2% and 7 min)

Future works:

 development of an adaptive approach able to switch
between different time scales according to the workload
conditions

 Test on a real prototype environment
25

Conclusions and Future
Works

26

Thank You!

Questions
?

	Diapositiva 1
	Agenda
	Introduction
	Introduction: challenges
	Introduction: resource provisioning
	Introduction: our approach
	Agenda
	Problem: design assumptions
	Problem: design assumptions
	Problem: design assumptions
	Problem: formulation
	Problem: formulation
	Receding Horizon Algorithm
	Receding Horizon Algorithm
	Agenda
	Experimental Analysis
	Experiment Design
	Experiment Design
	Scalability
	Cost – Normal traffic
	Cost – Spiky traffic
	Time scale analysis
	Time scale analysis
	Agenda
	Conclusions and Future Works
	Thank You!

