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Abstract—The size of modern datacenters supporting
cloud computing represents a major challenge in terms of
monitoring and management of system resources. Available
solutions typically consider every Virtual Machine (VM) as
a black box each with independent characteristics and face
scalability issues by reducing the number of monitoring re-
source samples, considering in most cases only average CPU
utilization of VMs sampled at a very coarse time granularity.
We claim that better management without compromising
scalability could be achieved by clustering together VMs
that show similar behavior in terms of resource utilization.
In this paper we propose an automated methodology to
cluster VMs depending on the utilization of their resources,
assuming no knowledge of the services executed on them. The
methodology considers several VM resources, both system-
and network-related, and exploits the correlation between the
resource demand to cluster together similar VMs. We apply
the proposed methodology to a case study with data coming
from an enterprise datacenter to evaluate the accuracy of
VMs clustering and to estimate the reduction in the amount
of data collected. The automatic clustering achieved through
our approach may simplify the monitoring requirements and
help administrators to take decisions on the management of
the resources in a cloud computing datacenter.

1. INTRODUCTION

In the few last years, cloud datacenters running different

applications have become popular in a variety of domains,

such as Web hosting, enterprise systems, and e-commerce

sites. Modern datacenters typically run thousands of differ-

ent applications with complex and heterogeneous resource

demand behavior. Virtualization has been increasingly

used to run multiple applications in virtual machines

(VMs), that are jointly hosted on physical servers and

share server resources over time.

The processes of monitoring and managing such in-

frastructures, that are typically composed of thousands

of nodes, each hosting tens or hundreds of VMs, are

extremely complex. The monitoring of such infrastructures

is likely to present scalability issues due to the amount of

data to collect and store when a large number of VMs are

considered each with several resources monitored with an

high sampling frequency [1]. Also efficient management

of VMs in a datacenter (for example, through periodic

consolidation of VMs) do not scale well due to the large

amount of data to analyze [16]. The scalability issue is

particularly difficult to tackle because providers of IaaS

cloud infrastructures do not have direct knowledge of the

application logic inside a software component, and can

only track OS-level resource utilization on each virtual

machine [17], [20]. Hence, most monitoring and man-

agement strategies in cloud datacenters assume that each

VM is a single object whose behavior is independent from

the other VMs of the cloud infrastructure. To reduce the

complexity of VM monitoring and management problem,

the typical approach in IaaS cloud is to reduce the problem

size. To this aim, available solutions may rely on low

sampling frequency of VM status or reduce the number

of VM resources that are taken into account, typically

considering only CPU-related information [2], [6], [16].

However, these approaches are likely to suffer important

drawbacks: on one hand, reducing the sampling frequency

leads to low reactivity to changes in demand; on the other

hand, limiting the monitoring to the CPU resource may not

be sufficient to capture changes in the behavior of VMs

running I/O bound or network bound applications.

We argue that the scalability of monitoring and man-

agement tasks in cloud infrastructures may be improved

by leveraging the similarity between VM behaviors, con-

sidering VMs not as single objects but as members of a

class composed by objects with a similar behavior (e.g.,

Web servers or DBMS). Indeed, once we have identified

classes of similar VMs, we may select a few representative

VMs for each class and carry out monitoring at a detailed

level only on these representatives. Other VMs can be

monitored at a much coarser granularity level with the goal

to discover if their behavior is changing with respect to

the class they belong to. This coarse-grained approach can

easily reduce the amount of data collected by one order

of magnitude with respect to the fine-grained monitoring

of every single VM, improving the scalability of cloud

monitoring and management.

The main contribution of this paper is the proposal

of an automated, non parametric methodology to cluster

together similar VMs in an IaaS cloud datacenter on

the basis of their behavior. The proposed methodology

exploits the correlation between the usage of several VM

resources to determine which VMs are following the same

behavioral patterns. To the best of our knowledge, this

is the first paper that proposes to automatically cluster

together VMs with similar behavior starting from the

usage information of several resources for management

purposes. A main advantage of our methodology is that

we take into account multiple resources, including network

and memory related information, differently from most

of the current solutions that mainly consider CPU-related

information. We apply the proposed methodology to a

dataset coming from a real cloud environment with VMs

hosting Web servers and DBMS. We demonstrate that



our methodology can achieve an accuracy in clustering

VMs that is between 85% and 100% for every considered

scenario, with a reduction in the amount of collected data

samples by a factor of 20.

The remainder of this paper is organized as follows.

Section 2 describes the proposed methodology for clus-

tering similar VMs in a cloud environment. Section 3

presents the case study used to evaluate our methodology

and describes the results of our experiments. Section 4

discusses the related work and Section 5 concludes the

paper with some final remarks.

2. METHODOLOGY

In this section we describe the proposed methodology

to automatically cluster similar VMs in a cloud datacenter.

The methodology consists in the following steps:

• Extraction of a quantitative model for describing the

VM behavior.

• Clustering based on the VM behavior model to iden-

tify classes of similar VMs

Given a set of n VMs, the first step of the methodology

aims at representing the behavior of each VM i, ∀i ∈
[1, n]. We consider that capturing the inter-dependencies

among the usage of different resources, such as CPU

utilization, network throughput or I/O rate, can describe

the VM behavior during a period of time. For example,

in Web servers network usage is typically is related to

the CPU utilization [3], while for DBMS CPU utilization

tends to change together with storage activity [9]. We

consider each VM as described by a set of m metrics,

where each metric j ∈ [1,m] represents a resource of the

VM.

Let (Xi
1
, Xi

2
, . . . , Xi

n) be a set of time series, where Xi
j

is the vector of the samples of the time series describing

the metric j of VM i. The inter-dependencies between

VM metrics are measured using correlation values, that

can be represented as elements of the correlation matrix

Si, where sij,k = cor(Xi
j , X

i
k) is the correlation coefficient

between the two time series Xi
j and Xi

k.

The correlation matrix Si describing the behavior of the

VM i is given as input to the second step of the methodol-

ogy, that aims to group similar VMs into classes. Starting

from the matrix Si, we build a feature vector V i that

is fed into a clustering algorithm. Clustering algorithms

typically have a computational complexity that grows with

the size of the feature vector, hence the performance of the

clustering task can be reduced by avoiding redundancies

in the V i vector. To this aim, we exploit the symmetric

nature of the matrix Si and the fact that the main diagonal

is composed of “1” to reduce the length of V i. We define

V i as V i = (si
2,1, s

i
3,1, s

i
3,2, . . . , s

i
m,1, . . . , s

i
m,m−1

).

The feature vector V i is used by the clustering algo-

rithm as the coordinate of VM i in the feature space.

We define C as the vector resulting form the clustering

operation. The i-th element of vector C, ci, is the number

of the cluster to which VM i is assigned. Many algorithms

are available for clustering, starting from the simple and

widespread k-means to more complex kernel-based so-

lutions, up to clustering based on spectral analysis [8].

In this first proposal of a methodology to automatically

cluster similar VMs, we adopt one of the most popular

solutions for clustering, that is the k-means algorithm,

leaving the comparison of different clustering algorithms

as a future work. However, we are aware that a problem

left unaddressed by the k-means algorithm is the automatic

identification of the number of cluster to be used. More

advanced techniques, such as techniques based on the

Spectral Analysis, can be used to this aim [14].

Once the clustering is complete, we can select some

representative VMs for each class to the purpose of sim-

plifying the monitoring task. Clustering algorithms such

as k-means provide as additional output the coordinates

of the centroids for each identified class. In this case, the

representative VMs can be selected as the VMs closest

to the centroids. The choice to consider more than one

representative for each class is due to the possibility that

a selected class representative changes its behavior with

respect to the class it belongs to. When more than one

representative is used, quorum-based techniques can be

exploited to identify a misbehaving VM within the list of

representatives.

3. CASE STUDY

To evaluate the results of the proposed methodology,

we consider a case study based on a dataset coming

from an enterprise datacenter supporting Web applications

deployed according to a multi-tier architecture. The data-

center is composed of 10 nodes on a Blade-based system

and exploits virtualization to support Web applications.

The nodes host 110 VMs that are divided between Web

servers and back-end servers (that are DBMS).

We collect detailed data about the resource usage of

every VM for a short period of time. The samples are

collected with a frequency of 5 minutes. For each VM

we consider 11 metrics describing the usage of different

resources (such as CPU, memory, disk, and network). The

complete list of the metrics is provided in Table 1 along

with a short description.

Table 1
VIRTUAL MACHINE METRICS

Metric Description

X1 SysCallRate Rate of system calls [req/sec]

X2 CPU CPU utilization [%]

X3 DiskAvl Available disk space [%]

X4 CacheMiss Cache miss [%]

X5 Memory Physical memory utilization [%]

X6 UserMem User-space memory utilization [%]

X7 SysMem System-space memory utilization
[%]

X8 PgOutRate Rate of memory pages swap-out
[pages/sec]

X9 InPktRate Rate of network incoming packets
[pkts/sec]

X10 OutPktRate Rate of network outgoing packets
[pkts/sec]

X11 ActiveProc Number of active processes



It is worth to note that, to collect data about 11 VM

metrics with a frequency of 1 sample every 5 minutes, we

need to manage a volume of data in the order of 16×103

samples per day per VM. Considering a datacenter hosting

110 VMs, the total amount of data is in the order of

1.7 × 106 samples per day. After the clustering, we

need to continue monitoring every 5 minutes only a few

representatives per class, while the remaining VMs can

be monitored with a coarse time granularity, for example

of 1 sample every few hours. Assuming to select 3

representatives for each of the 2 classes, the amount of data

to collect after clustering is reduced to 95× 103 samples

per day for the class representatives; for the remaining 104

VMs, assuming to collect 1 sample every 6 hours for VM,

the data collected are reduced to 4.5 × 103 samples per

day. From this example we observe that our proposal may

reduce the amount of data collected by nearly a factor of

20, from 1.7× 106 to 99× 103.

Let us now describe the application of how methodol-

ogy to the considered case study. For each considered VM,

we compute the correlation between couples of measured

metrics. As discussed in Section 2, the resulting correlation

matrix is used to build a feature vector describing the VM

behavior, that is used for the subsequent VM clustering

step. Then, we compare the results of the clustering step

with the actual clusters (we consider that Web servers and

DBMS servers are divided into two different clusters) and

we evaluate the percentage of correctly identified VMs. As

the used k-means clustering algorithm starts each run with

a set of randomly-generated cluster centroids, we carry

out the clustering step 104 times to have a statistically

significant set of data and we consider the average fraction

of correctly identified VMs over the different iterations

as a measure of the clustering accuracy. Specifically, we

define accuracy by comparing the output of the clustering

algorithm C with the vector C∗ representing the correct

clustering solution. Accuracy is thus defined as:

accuracy =
|{ci : ci = ci∗, ∀i ∈ [1, n]}|

|C|

In our experiments, we evaluate the accuracy and the

scalability of the clustering as a function of: (1) the length

of the time series expressing the metric sampling; (2)

the number of VMs. In the first analysis, we consider

time series length ranging from 5 to 50 days. The time

required for the clustering on an Intel Xeon 2GHz node

is in the order of less than 2 minutes for every considered

dataset. The results in our experiments show that the actual

analysis of data for clustering VMs into classes poses no

performance issue for the datacenter of our case study.

The histogram in Figure 1 presents the clustering accu-

racy as a function of the time series length. We show that,

given a very long time series, the clustering is perfect,

that is every Web server and every DBMS is correctly

identified. On the other hand, the accuracy significantly

decreases as we reduce the amount of data used to create

the correlation matrix. In particular, when the time series

is below 20 days, the accuracy is below 0.7, reaching 0.65
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Figure 1. Accuracy for different time series length

for a time series of only 5 days.

Analyzing the reasons for the poor performance ob-

tained with time series shorter than 20 days, we observe

that some VMs present a bimodal behavior, with periods

where the VM is mostly idle mixed with periods where the

VM is heavily utilized. When we consider short time series

(e.g., 5 days), we notice some time series composed almost

exclusively by idle periods. This is the reason for the poor

performance of the methodology: during the idle periods,

the correlation between the metrics describing the VM is

significantly reduced, thus leading to wrong clustering. To

avoid this effect, we consider a different approach, where

we filter the time series in order to extract a sequence of

samples with no idle periods in between. In Figure 2, we

compare the results of our filtered data against the time

series of the same length used previously.
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Figure 2. Impact of idle data filtering on clustering accuracy

Finally, we evaluate whether the accuracy of the clus-

tering process may vary depending on the number of

considered VMs. Table 2 shows how accuracy changes

as the number of VMs considered in the clustering grows

from 10 to 110, considering time series of 15 days. We

observe that, with the notable exception of the simplest

case of only 10 VMs, the accuracy of the clustering is

mostly unaffected by the number of elements to cluster.



This result is important, because it shows the viability

of the proposed methodology even in the case of large

datacenters. Furthermore, the rightmost column of Table 2

presents the time for the clustering as a function of of

the number of VMs considered. The results show a linear

growth in the time required for clustering that proves the

scalability of our solution for IaaS cloud datacenters.

Table 2
IMPACT ON ACCURACY OF VM NUMBER

Number of VMs Accuracy Clustering time [s]

10 1 49.7

30 0.86 59.5

50 0.84 68.6

70 0.84 78.0

90 0.83 88.3

110 0.84 95.3

4. RELATED WORK

The research activities related to the scalability issues

in cloud datacenters concern two main topics that are

strictly correlated: resource management and infrastructure

monitoring.

Many existing studies propose resource management

strategies based on the usage of one or few resources

compared against thresholds. For example, the studies

in [2] and [6] propose solutions for consolidation of virtual

machines based on adaptive thresholds regarding the CPU

utilization values. Wood et al. [21] propose a reactive,

rule-based approach for virtual machine migration that

defines threshold levels regarding the usage of few specific

physical server resources, such as CPU-demand, memory

allocation, and network bandwidth usage. Kusic et al. [10]

address the issue of virtual machine consolidation through

a sequential optimization approach; the drawback is that

the proposed model requires simulation-based learning and

the execution time grows very fast even with a limited

number of nodes. All these studies perform a per-node

analysis based on the usage of one or few resources; how-

ever, these approaches are likely to suffer from scalability

issues in large scale distributed systems, such as IaaS cloud

computing datacenters.

Few recent studies aim to reduce the dimensionality

of the resource management problem, such as [16], [15],

[18]. The studies in [16], [15] exploit a statistical analysis

based on Singular Value Decomposition (SVD) to pre-

dict the workload demand aggregated on different virtual

machines to anticipate overload conditions on physical

servers and trigger virtual machine migrations. Tan et

al. [18] apply Principal Component Analysis (PCA) to

evaluate resource usage patterns across different nodes.

The proposal consists in placing on the same physical

server virtual machines with negatively correlated resource

patterns to reduce the usage variability on the servers. All

these studies have a different goal with respect to our

paper, because they address the specific problem of virtual

machine consolidation in cloud datacenters. Moreover, all

their solutions consider only one resource, that is the CPU

utilization of virtual machines, while we aim to support

management strategies that consider multiple resources,

from CPU to network and disks.

As regards the issue of monitoring large datacenters,

current solutions can be divided into log aggregators

and frameworks for periodic collection of system status

indicators. Among log aggregators, often called also log

collectors, the most widespread solution is the Syslog

daemon, with its recent extension [7] that was explicitly

designed to be used by cloud entities or applications to log

and trace activities occurring in the cloud. Solutions such

as Cacti and Munin [11], [12] are more oriented towards

the periodic collection of data. Cacti is an aggregator

of data transferred through the SNMP protocol, while

Munin is a monitoring system based on a proprietary

local agent interacting with a central data collector. Both

these solutions are typically oriented to medium to small

datacenters because of their centralized architecture that

limits the overall scalability of the data collection process.

Ganglia [5] provides a significant advantage over the

previous solutions as it supports a hierarchical architecture

of data aggregators that can improve the scalability of data

collection and monitoring process. As a result, Ganglia is

widely used to monitor large datacenters [4], [13], even

in cloud infrastructures [19], by storing the behavior of

nodes and virtual machines by organizing the data in time

series. Another solution for scalable monitoring is pro-

posed in [1], where data analysis based on the map-reduce

paradigm is distributed over the levels of a hierarchical

architecture to allow only the most significant information

to be processed at the root nodes. However, all these

solutions share the same limitation of considering each

monitored object (being it a VM or a host) independent

from the others. This approach fails to take advantage

from the similarities of objects sharing the same behavior.

On the other hand, a class-based monitoring system may

perform a fine-grained monitoring for only a subset of

objects that are representative of a class, while other

members of the same class can be monitored at a much

more coarse-grained level. We believe that integrating our

solution into existing hierarchical models for monitoring

can significantly improve the scalability of monitoring

operations.

5. CONCLUSIONS AND FUTURE WORK

Modern datacenters supporting IaaS cloud represent a

major challenge for the monitoring and management of

resource utilization, mainly due to scalability issues. In

this paper we propose a methodology for automatically

clustering VMs into classes that share similar behavior

aiming to improve the scalability of monitoring and man-

agement. This approach exploits information about the

correlation among usage of multiple resources ranging

from CPU to storage and network. The application of

the proposed methodology to a real datacenter hosting

multi-tier Web applications shows that the accuracy of

VMs clustering ranges between 100% and 85% for every

considered scenario and can reduce the amount of data



collected by a factor of 20.

This study is just a first step towards the definition of

a general methodology for the automated classification of

VMs in cloud datacenters. Future work includes a compar-

ison of multiple clustering algorithms, the proposal of new

metrics to identify the similarity of VMs, and solutions to

improve the scalability of the clustering process in case of

high-dimensionality feature vectors.
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