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Abstract

Smart cities represent an archetypal example of infrastructures where the fog computing
paradigm can express its potential: we have a large set of sensors deployed over a large
geographic area where data should be pre-processed (e.g., to extract relevant information
or to filter and aggregate data) before sending the result to a collector that may be a cloud
data center, where relevant data are further processed and stored.

However, during its lifetime the infrastructure may change, e.g., due to the additional
sensors or fog nodes deploy, while the load can grow, e.g., for additional services based on the
collected data. Since nodes are typically deployed in multiple time stages, they may have
different computation capacity due to technology improvements. In addition, an uneven
distribution of the workload intensity can arise, e.g., due to hot spot for occasional public
events or to rush hours and users’ behavior. In simple words, resources and load can vary
over time and space.

Under the resource management point of view, this scenario is clearly challenging. Due
to the large scale and variable nature of the resources, classical centralized solutions should
in fact be avoided, since they do not scale well and require to transfer all data from sensors
to a central hub, distorting the very nature of in-situ data processing.

In this paper, we address the problem of resources management by proposing two dis-
tributed load balancing algorithms, tailored to deal with heterogeneity. We evaluate the per-
formance of such algorithms using both a simplified environment where we perform several
sensitivity analysis with respect to the factors responsible for the infrastructure heterogene-
ity and exploiting a realistic scenario of a smart city. Furthermore, in our study we combine
theoretical models and simulation. Our experiments demonstrate the effectiveness of the al-
gorithms under a wide range of heterogeneity, overall providing a remarkable improvement
compared to the case of not cooperating nodes.
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1. Introduction

The fog computing paradigm shifts the deployment model of distributed applications
from a centralized approach, where every component of the application runs in a cloud data
center, towards a multi-layer architecture, where processing functions can be distributed
along the path from the network edge to the centralized cloud core [1]. This innovative model
aims to cope with the demand for low latency (in the order of 10ms) and high throughput (in
the order of 10Gbps), combined with security and privacy demands [2]. A similar approach
lies behind the terms Edge Computing, Multi-access Edge Computing (MEC), or Cloudlet,
which differ for the physical front line where managed resources are placed.

The reference model for our paper is provided in Fig. 1, with fog nodes densely distributed
in a given geographic area that provide a service of data processing for a plethora of sensors,
e.g., IoT sensors or image processing in a smart city application, using a 5G Fog Radio
Access Network (F-RAN) architecture [3]. See [4] and [5] for a more in-depth description
of computer vision-based services and smart cities infrastructures. It is worth to note that,
even if in this paper the reference scenario is focused on a smart city application, the main
findings of our research have general validity and can be applied to other application fields
with similar characteristics.

Figure 1: A typical fog computing deploy model.

To understand how important the role of fog computing infrastructures could get in the
near future it is sufficient to consider the businesses opportunities created by the combination
of dense populations and complex infrastructures: up to 80% of cities in the United States,
indeed, are expected to adopt connected technologies within the year 2025 and create about
$1.5 trillion dollars in economic value1.

1https://www.forbes.com/sites/blakemorgan/2019/11/01/top-80-stats-about-a-future-customer-
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In the case of a smart city, the fog computing infrastructure has to support IoT-based
applications that often present critical requirements in terms of low and predictable latency
and high computational load. Typical examples of such applications are gaming and aug-
mented reality, control of autonomous vehicles, vehicular traffic monitoring, environmental
sensing (e.g., air quality control), and public surveillance [6, 7]. These applications usually
involve high amounts of data (e.g., video frames) produced at the sensor layer that should be
processed by the fog nodes involving computationally expensive tasks. Another application
key requirement could be an almost real-time responsiveness to efficiently react to situation
changes. Finally, we must consider that smart city infrastructures are seldom deployed in
the space of a single project, but the deployment is typically divided into multiple projects
over time. As a consequence, the resulting fog infrastructure is typically highly heteroge-
neous, with nodes characterized by highly different hardware with different communication
and processing capabilities.

Among the several challenges introduced by the fog computing (see [8] for a general
discussion), in order to address the above upcoming scenario, we focus on a specific research
topic currently under investigation: the design of an algorithm for resource sharing among
uncoordinated and heterogeneous fog nodes in order to improve the response time of smart
cities applications. Although resource sharing is a classical and well-studied topic in the
computer science community, this model of fog computing does not fit all the assumptions
of the studies available in the literature. In particular, the following elements are new to
the fog deployment: (i) the heterogeneity among the elements of the infrastructure; (ii) the
execution time of a job that is comparable to the time required to transfer the job from the
node of origin to another node; (iii) the absence of a centralized entity that acts as a load
balance.

Our proposal consists of two load balancing algorithms, namely sequential forwarding and
adaptive forwarding, designed to take these peculiarities into account. In particular, in this
paper we place a major emphasis on the heterogeneity aspect of the problem, considering
that fog nodes are characterized by different computing power and may receive different
workload intensities. The workload consists of jobs that are continuously generated from
end devices (on-line load balancing). The basic idea of the proposed algorithms is the
following. We assume that the fog computing layer provides an elementary service to end-
users, e.g., consisting in object detection inside a video frame [5]. As jobs reach the fog
nodes, the nodes estimate the expected waiting time (based on the number of jobs already
being processed by the node). If the waiting time exceeds a threshold Θ (that may change
depending on the fog node and may be self-tuning), the fog node forwards blindly at random
the job to another fog node, that executes the same decision algorithm. By this, we mean
that the node doesn’t keep or probe any information about the current state of the other
nodes, but rather picks one of the nodes it is aware of, uniformly at random. Decisions are
memory-less, except for the number of forwarding (steps) already done, which is carried in
the message. The steps are upper bounded by a parameter M . At the M -th forwarding,
the receiving fog node will process the job without further attempts, unless its processing

experience-shaped-by-technology/
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queue is full, in which case the job will be dropped.
Any of the two algorithms fits the three challenges of fog computing because (i) it takes

explicitly into account uneven load distributions and heterogeneous node characteristics and
configurations parameters, e.g., lightly loaded nodes do not forward their jobs often (where
the load is normalized to the actual node execution speed) (ii) it places a significant effort
in limiting the number of (potentially expensive) transmissions between nodes by adapting
Θ, (iii) it is completely distributed since forwarding decisions are local, uncorrelated and
autonomous.

The contribution of the paper can be summarized as follows:

• definition of a lightweight randomized on-line distributed load balancing algorithm
suitable for scenarios characterized by independent providers and heterogeneous load
conditions, along with a variant based on a self-tuning mechanism;

• mathematical analysis and experimental evaluation of the algorithms on a realistic sce-
nario, showing evidence of significant improvements compared to unbalanced nodes.
Throughout our sensitivity analysis we found that the loss rate of the proposed algo-
rithms is in most cases 15 to 19 times lower than the case where no cooperation is used.
In a similar way, the response time is reduced by 19% to 11% in most scenarios. In
the realistic setup our algorithms provide an even more impressive performance gain
with a reduction in the loss rate from 13% to 0.2% and a response time nearly halved;

• through our tests we point out how a self-tuning mechanism can provide robust per-
formance requiring limited tuning of the algorithms’ parameters and we provide some
insight on how the characteristics of a heterogeneous infrastructure impact on the
algorithms’ parameters.

The rest of this paper is organized as follows. Section 2 discusses related works. Section 3
describes the proposed algorithms while Section 4 describes a mathematical model of the
protocol and provides some numerical results on the performance of the algorithms. In
Section 5 a simulation-based study is used to carry out sensitivity analyses of the proposed
algorithms to the main scenario parameters and to evaluate the performance of our proposals
in a realistic scenario of a smart city application deployment. Finally, some concluding
remarks are provided in Section 6.

2. Related Work

The interest towards the management of fog computing infrastructures has been ad-
dressed in literature in multiple ways.

On one hand, a corpus of literature aims to address the problem of connecting end
devices (e.g., sensors) to fog nodes and fog nodes to cloud data centers. For example [9]
proposes an optimization model based on energy consumption to map processing tasks over
fog nodes and cloud data centers. A different approach is introduced in [10] where the
focus is more oriented towards providing a good mapping between fog nodes and sensors
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in a heterogeneous environment. However, both these papers follow an approach where
the incoming data flows and computing tasks are statically assigned over the infrastructure.
Our algorithms, instead are completely dynamic and can easily adapt to workload conditions
that change over time. Our experiments show that with, limited tuning, it is relatively easy
to adapt to a wide range of application scenarios.

Our research is more focused on the proposal of load balancing algorithms. In this field,
a significant example is an algorithm called Multi-tenant Load Distribution Algorithm for
Fog Environments (MtLDF) [11], that has been proposed to optimize load balancing in Fogs
environments considering specific multi-tenancy requirements. However, the proposed load
balancing scheme assumes the presence of a centralized fog management layer that collects
all the state information concerning the fog nodes, while our solution is fully distributed.

Another interesting approach where the tasks for the fog noses are classified according
to their computational nature and are subsequently allocated to the appropriate host is pro-
posed in [12]. Even if the communication is based on distributed Pub/Sub messaging pattern
based on brokering system for IoT applications, the system is still based on a centralized
workload balancer, unlike our fully distributed approach.

Yousefpour et al. [13] propose a system similar to our Sequential Forwarding algorithm.
However, the proposed solution still requires a centralized repository to store the load state
of each fog node. A variant of the proposed system relies on a specific communication
pattern similar to a gossip protocol to send updates on the load state of each node. Our
approach, based on a blind forwarding provides good performance without complex coordi-
nation structures.

A different approach is followed in [14] where, instead of flows of requests, the focus is
on a batch system where incoming tasks are collected and periodically distributed to the
In [14] an approach is presented to periodically distribute the incoming tasks in the edge
computing network. This approach is highly effective to guarantee the respect of quality-
of-service (QoS) requirements. However, such approach is not viable unless the application
model handles only batch of tasks that needs to be dispatched across a network that is not
subject to changes in the processing time or overload conditions. On the other hand, our
proposal adopts a more general vision of online task processing suitable for a more reactive
approach to the problem.

Finally, the idea of randomly selecting nodes to offload a task is used in the class of
power-of-choices algorithms, adapted in [15, 16] to work in the fog deploy model. The key
difference with the algorithm proposed in this paper is that tasks are forwarded without
making any selection among alternatives and that self-adaption is absent.

As a final remark, it is worth to note that almost all the proposed studies do not explicitly
take into account the heterogeneous nature of a fog computing infrastructure, while in our
analysis we explicitly focus on this aspect.

3. Sequential forwarding algorithms

We now discuss our two proposed algorithms for load balancing, which are variants
of the same central idea. This key idea is to allow fog nodes to make autonomous and
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uncoordinated decisions about serving or offloading a job. This decision is promptly taken on
a per-job basis without the need of any coordination, e.g., a centralized entity or information
about the state of other nodes. This is a distinctive feature of our design that in our
opinion fits a general fog computing model, where fog nodes can be heterogeneous and can
undergo different local management rules. In order to explain the load balancing algorithms,
we refer to the architecture in Fig. 1, where a set of sensors send jobs to a layer of fog
nodes. Each sensor communicates with one fog node. The sensor to fog node mapping can
be based on geographic distance as in [9] or can exploit a more complex algorithm [10].
The workload of each fog node is typically heterogeneous, for the twofold reasons of time-
dependent fluctuations in the workload patterns or due to uneven distribution of sensors
among the fog nodes [17]. A similar heterogeneity can occur also in the characteristics
of the fog nodes as the deployment of the infrastructure starts with a small prototype
implementation that is then expanded over time with more modern fog nodes. Furthermore,
fog nodes may belong to different providers that may adopt their own management rules or
technology, e.g., containerization implementations based on Docker Swarm or Kubernetes
from one hand, or based on VMs on the other hand. For the sake of our proposal we
assume that the fog nodes expose some standard high-level interface through which they
may forward jobs, e.g., HTTP endpoints, masking the actual network layer solution2. All
nodes know the communication endpoints of the other nodes.

Our proposal consists of two algorithms aiming to define when a job should be forwarded
to a neighbor, and to which neighbor the job should be forwarded. We start our presentation
with a Sequential Forwarding algorithm; next we describe an evolution of this algorithm,
namely Adaptive Forwarding algorithm. Finally, we discuss a baseline algorithm, namely
No LB, that is the case where no load balancing occurs among the fog nodes.

3.1. Sequential Forwarding algorithm

The Sequential Forwarding algorithm uses a threshold Θn for each fog node n to decide if
an incoming job should be forwarded to a random neighbor or not. The threshold operates on
the system load, which is the number of jobs queued in the fog node (or being executed). The
system load represents an estimate of the waiting time for the incoming job. An additional
parameter of the algorithm is the maximum number of steps M to guarantee a limit on the
delay associated with the load balancing phase.

Algorithm 1 presents the proposed load balancing mechanism. When a job arrives, if
the job has not yet reached the M -th step, the system load (that is the number of jobs
already scheduled for processing in the fog node) is considered. If the value does not exceed
the threshold Θn, the job is accepted and scheduled for local processing. Otherwise, it is
forwarded to a randomly-selected neighbor. We point out two main features of the proposed
algorithm that are (i) the blind and memoryless nature of the algorithm so that no prob-
ing for the neighbor status nor reservation (to make sure that the job finds the resource
available [18]) is required; and (ii) the ability of the algorithm to adapt to heterogeneous
scenarios and to operate in a completely distributed way thanks to the per-node threshold

2For example, the X2 interface allows direct communications among 5G nodes.
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Algorithm 1 Sequential Forwarding Algorithm

Require: M , Θn, Job
if Job.Steps() < M then
if System.Load() ≤ Θn then

ProcessLocally(Job)
else

Neigh ← Random(System.Neighbors())
Job.IncrementSteps()
Forward(Job, Neigh)

end if
else

ProcessLocally(Job)
end if

Θn. If the job has already been forwarded M times, it is scheduled for local processing.
This makes the algorithm extremely simple to implement and facilitates its adoption among
different providers.

We also detail the local processing of the job, as this task is also responsible for the drop of
the job if the queue is full, as pointed out in Algorithm 2. It is worth to note that dropping a
job in the case the queue becomes too long may be an extreme measure undesirable for some
applications. In this analysis we prefer to focus on a simplified scenario that is easy to model
and to implement rather than considering multiple queuing and dropping behavior depending
on the application. Such evolution of the algorithms can be an additional extension of the
present research that is left as future work.

Algorithm 2 Local processing: ProcessLocally()

Require: Job
if System.Queue() < System.MaxQueue() then

Enqueue(Job)
else

Drop(Job)
end if

3.2. Adaptive Sequential Forwarding algorithm

The Sequential Forwarding proposed in Sec. 3.1 has two separate parameters, Θn and
M , that show an inherent inter-dependence: indeed, if Θn is low, we may have a high
number of forwarding, so M may play a pivotal role. This makes the algorithm tuning com-
plex, especially in heterogeneous scenarios, where the thresholds may be different across the
infrastructure. To address this problem we introduce an adaptive version of the algorithm.
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The Adaptive Sequential Forwarding algorithm (Adaptive Forwarding for short), is an
evolution of the Sequential Forwarding proposed in Sec. 3.1 that introduces some self-tuning
ability.

Algorithm 3 Adaptive Forwarding Algorithm

Require: M , Job
Q← System.MaxQueue()
Θ← dJob.Steps() * Q/Me
SequentialForwarding(M , Θ, Job)

Algorithm 3 shows the behavior of the Adaptive Forwarding Algorithm. The threshold
Θn is computed in the same way for every node and grows linearly with the number of steps.
If a job has never been forwarded (or has been forwarded just a few times), the job is not
processed locally unless the local load is very low. On the other hand, if a job has already
been forwarded several times we assume a more relaxed attitude towards the search of a fog
node with a low load.

The algorithm starts requesting the maximum queue length of the fog node; next the
algorithm computes the threshold Θn that grows linearly with the number of times the job
has been forwarded. In particular, we tune the growth of the threshold in such a way that,
after M steps, the threshold Θn is equal to the maximum queue length of a fog node, thus
guaranteeing that the job will be accepted unless this last visited node has no room in its
queue.

3.3. Baseline algorithm

In the performance evaluation, we consider also the No LB algorithm, that is the case
where no load balancing occurs, as a baseline.

Considering the previously described algorithms, and given Q as the maximum length of
queue (as in Algorithm 3), the behavior corresponds to the case where Θn > Q or to the case
where M < 1. We expect this algorithm to suffer from a high loss rate (that is jobs dropped
because the queue is full), unbalanced load (especially in scenarios with heterogeneous load
distribution among the fog nodes) and, generally, poor performance.

4. Model

We start studying the algorithm under an ideal deployment composed by an infinite
number of nodes and for M = 1. The case M > 1 can be incorporated in the proposed
framework, but for the sake of clarity, this extension is left as future work. To capture
heterogeneity, we assume that two types of fog nodes exist, type A and type B.

We define as α (β) the probability that a class A node (class B node) forwards a job
to a node of the same class. Any fog node is abstracted as a FIFO queue with the same
bounded number of places QA (QB), included the server. Class A (B) nodes get a nominal
Poisson flow of jobs at rate λA (λB) jobs/s from directly connected users, while the service
time of a job is exponentially distributed with an average processing rate of µA (µB).
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The system under investigation is composed of two tagged nodes a ∈ A, b ∈ B plus a
set of NA class A nodes and a set of NB = NA = N class B nodes. We derive the main
performance metric of the load balancer in the limit of N →∞. The reason for this limiting
study is that it assumes independence among nodes, a desirable property that holds for
simple homogeneous FIFO queues [19]. Let then assume that all the nodes of the system
are independent from each other. The effect of the N nodes on a and b is equal to the
probability of node a (b) being in a given state, since it represents the fraction of the NA

(NB) nodes in the same state.
Without loss of generality, we now focus on node a. Due to the symmetry, the results for

node b are the same, except for the fact of swapping labels A with B and α with β. In the
following derivations, we assume that a node is in a state i when it has i tasks in its queue.

Node a may receive jobs forwarded by other nodes of the same class or from the other
class with rate:

λFA
= αλAπ̃AΘA

+ (1− β)λBπ̃BΘB
(1)

where π̃Ai =
∑QA

j=i πAi (π̃Bi =
∑QB

j=i πBj) is the probability that a node of class A (B) is in
a state higher or equal than i, indeed πAi (πBi) is the steady state probability of a node of
class A (B) to be in state i. In fact, due to independence among states, NAλAπ̃AΘA

is the
rate at which NA class A nodes forwards job. And one of this job hits a with probability
α

NA+1
: the job selects nodes of the same class with probability α and picks exactly a with

probability 1
NA+1

. For this reason, the first term in the above expression represents the flow
of jobs seen by a and coming from nodes of the same class, in the limit of N → ∞. The
second term has a similar interpretation.

The transition rate from the state i to i+ 1 is:

λAi =

{
λA + λFA

i ≤ ΘA

λFA
i > ΘA

(2)

The steady state probability distribution satisfies the following standard linear set of equa-
tions:

QAπA = [0, . . . , 1]T (3)

where:

QA =


−λA0 µA 0 . . . 0
λA0 −(λA1 + µA) µA . . . 0

. . .

0 λAi−1
−(λAi

+ µA) µA . . . 0
1 1 1 1 1 1

 (4)

The solution is found numerically as follows. The linear system is first solved using the
matrix Q0

A with λAi = λA. An analogous system of equations is solved using Q0
B, where

λBi = λB. These solutions exist because they define two independent M/M/1/Q Markov
Chains. From these solutions, Eq. (1) (and the analogues for B) are used to compute the
traffic flows for two new pair of matrix, say Q1

A and Q1
B. The algorithm continues until

max{||Qn
A −Qn−1

A ||} < ε and max{||Qn
B −Qn−1

B ||} < ε.
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4.1. Metrics

In this section, we derive the main performance indicator of the algorithm. Due to the
symmetry we keep the node a point of view. Any metric concerning b is the a’s one where
B,A and α, β are swapped.

4.1.1. Blocking probability

The first metric of interest is the probability that a job is blocked pB, namely the fraction
of jobs that cannot be served by any fog node. As these jobs are dropped by the fog nodes,
this metric is also referred to as loss rate or drop rate. The value of this metric is given by:

pB =
pBA

+ pBB

2
(5)

where the two contributions are the probability that a job received by a class A (class B)
node is blocked, which are given by:

pBA
= π̃A[απAQA

+ (1− β)πBQB
] (6)

4.1.2. Response Time

The second relevant metric is the average response time, T , namely the time elapsed
from when a job is received by a node until the serving nod ends to execute the job. We
do not consider the delay due to a possible reply to the originator of the job. This quantity
is due to the queueing waiting time (W ), execution time ( 1

µ
), and job forwarding delay.

Concerning the fist contribution, the average queue length of the node a is:

QA =

QA∑
k=1

kπAk
(7)

The net flow of jobs entering in a is the sum of jobs from:

• users connected to a, at rate λA(1− π̃AΘA
)

• class A nodes with state above ΘA selecting a, at rate π̃AΘA
λAα(1− πQA

)

• class B nodes with state above ΘB selecting a, at rate π̃BΘB
λB(1− β)(1− πQA

).

Hence, applying the Little’s result the queue’s waiting time at class A nodes is:

WA =
QA

(1− πQA
)(λA(1− π̃AΘA

) + λAπ̃AΘA
α + λBπ̃BΘB

(1− β))
(8)

Since a not blocked job arriving to a class A node is served either by a class A node (hence
experiencing SA) or a class B node (hence experiencing SB), the average response time of
jobs received by class A nodes is a weighed average of the two service delays plus the average
time spent to forward a job:

TA =
PSAA

(
1
µA

+WA

)
+ PSAB

(
1
µB

+WB

)
PSAA

+ PSAB

+ π̃AΘA
δ (9)
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where PSAA
(PSAB

) is the probability that the job is served by a class A (class B) node,
π̃AΘA

the probability a job is forwarded, and δ the average forwarding time. The probability
PSAA

takes into account that the fact that the job can be forwarded and served by another
class A node or directly served by a:

PSAA
= π̃AΘA

α(1− πAQA
) + (1− π̃AΘA

) (10)

while PSAB
is:

PSAB
= π̃AΘA

(1− α)(1− πBQB
) (11)

Finally:

T =
TA + TB

2
(12)

4.2. Result

In this section we report some representative results obtained from our model, when
α = β = 0.5. Fig. 2 reports the blocking probability and the response time as a function of
ΘA for the homogeneous case, i.e., when nodes have the same speed. The optimal threshold
that minimizes the blocking probability is when ΘA = ΘB = 6 (as shown in Fig. 2a), i.e.,
roughly half of the total queue length, which is also an intuitive result: if the current length
is too small, there is also a small chance for the job of landing on a less loaded queue,
whereas if the length is too high load balancing doesn’t arise since the job cannot return to
the original node. The lowest response time is however obtained for the different threshold
value ΘA = ΘB = 3, as shown in Fig. 2b. The reason is that nodes now drop more jobs and
hence the queue length is shorter. Reducing the threshold further will also progressively
eliminate the load balancing effect and hence the average queue length increases again.
Both figures also show a representative case of thresholds tuned differently, in particular
when ΘB = 5 while ΘA is free to vary.
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Figure 2: Performance metrics vs ΘA, same traffic and service times.

Figure 3a shows the blocking probability for the full combination of thresholds for the
homogeneous case and Figure 3b for when the speed of class B node is twice the A’s one.
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We can see how there is still an advantage despite the heterogeneity among nodes, and that
the best threshold combination is now slightly different.

 0
 2

 4
 6

 8
 10

 0
 2

 4
 6

 8
 10

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

ΘAΘB

pB

(a) µB = µA

 0
 2

 4
 6

 8
 10

 0
 2

 4
 6

 8
 10

1e-04

1e-03

1e-02

1e-01

1e+00

ΘAΘB

pB

(b) µB = 2µA

Figure 3: Loss rate vs. thresholds, traffic intensity ρ = 0.9

λA λB µA µB ρA ρB Θ∗
A Θ∗

B pB0 p∗B T0 T ∗

0.85 0.85 1.00 1.00 0.85 0.85 6 6 3.55e-02 5.12e-06 5.22 4.52
0.90 0.90 1.00 1.00 0.90 0.90 6 6 5.08e-02 6.67e-05 5.65 4.96
0.95 0.95 1.00 1.00 0.95 0.95 6 6 6.94e-02 1.18e-03 6.08 5.65
0.99 0.99 1.00 1.00 0.99 0.99 7 7 8.64e-02 1.06e-02 6.42 7.02

0.85 0.90 1.00 1.00 0.85 0.90 6 6 4.31e-02 1.85e-05 5.43 4.72
0.95 0.90 1.00 1.00 0.95 0.90 6 6 6.01e-02 2.71e-04 5.86 5.25
0.99 0.90 1.00 1.00 0.99 0.90 6 6 6.86e-02 9.05e-04 6.03 5.56

0.90 0.90 0.90 1.00 1.00 0.90 6 7 7.09e-02 1.12e-03 6.43 6.13
0.90 0.90 1.10 1.00 0.82 0.90 6 6 3.91e-02 8.66e-06 5.07 4.38
0.90 0.90 1.20 1.00 0.75 0.90 6 5 3.28e-02 1.74e-06 4.66 3.81

1.80 0.90 2.00 1.00 0.90 0.90 7 5 5.08e-02 1.12e-04 4.23 3.65
2.70 0.90 3.00 1.00 0.90 0.90 8 5 5.08e-02 2.61e-04 3.76 3.33
3.60 0.90 4.00 1.00 0.90 0.90 8 4 5.08e-02 4.97e-04 3.53 2.96

Table 1: Optimal thresholds that minimize the blocking probability.

To better explore the range of applicability of the proposed protocol, Tab. 1 reports the
highest possible reduction of the blocking probability under a variety of conditions, obtained
by setting the thresholds to the values Θ∗

A,Θ
∗
B that minimize pB. The results are divided

into four groups. In the first one, the offered traffic changes for all nodes in the same way
and nodes are also equal in terms of execution speed. i.e., the system is homogeneous. The
result confirms that the best threshold is almost half of the queue length. Load balancing
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can reduce up to four orders of magnitude the blocking probability for moderate traffic with
respect to the case in which there is no cooperation, reported in column pB0 , and it allows
reducing at the same time the average delay (see T ∗ and T0) for all cases but the high load
case. As the load increases to 0.99 in fact, while there is still an improvement in terms
of pB the average response time is higher compared to no cooperation just because more
jobs are queued. Moreover, the table reports the result of three heterogeneous cases, where
nodes are different because type A nodes: (i) get a different traffic flow, (ii) have a different
execution time, (iii) have different traffic and execution time but their traffic intensity ρ = λ

µ

is constant. The changed parameter is given in bold. For all scenarios, the algorithm is able
to reduce the blocking probability of at most two orders of magnitude. The response time
T ∗ is also always lower than the no cooperative case.

Once the analysis provided a generally positive assessment concerning the expected be-
havior of the protocol, we are now ready to consider more realistic cases, with a finite number
of nodes and higher M .

5. Simulation Results

In the present section, we evaluate the performance of the proposed algorithms relying
on a simulation approach. Throughout these tests we will consider the Sequential Forward-
ing algorithm (Seq Fwd described in Sec. 3.1), the Adaptive Forwarding alternative (Adapt
Fwd, Sec. 3.2) and the case where no load balancing occurs (No LB). We start providing
a summary of the tests carried out, presenting the reference experimental scenarios. Next,
we consider a simplified scenario where we have two classes of fog nodes, namely A and B,
characterized by different configurations and, possibly, by different computing power. In this
scenario we first validate the simulation results against the numerical model presented in
Sec. 4 and, next, we discuss the main findings of the simulation-based performance evalua-
tion. After this preliminary study, we carry out a thorough sensitivity analysis with respect
to the main parameters that may determine a scenario heterogeneity, regarding different
computational power of the fog nodes and different distribution of A and B fog nodes pop-
ulations. Finally, we focus on a realistic geographic setup for a smart city and we evaluate
in detail both the Sequential Forwarding and the Adaptive Forwarding algorithms.

5.1. Scenarios definition

The first scenario used in our experiments is named simplified scenario. We model the
fog nodes as M/M/1/Q queuing systems, with an exponential distribution of both incoming
jobs from the sensors and job service in the fog nodes. We consider two populations of fog
nodes, namely A and B characterized by a different processing power such that µA ≥ µB,
with µB = 1.0 jobs/sec. Let NA be the number of nodes of class A and NB be the number of
node of type B. Concerning the workload, we consider that every fog node receives the same
workload intensity λA = λB = λ. To make sure that the global load on the fog infrastructure
is ρ = 0.9, we consider that ρ = (NA + NB)λ/(NAµA + NBµB) and we derive λ from this
formula. For each fog node, maximum the queue length is set to Q = 10. Additional
parameters related to adaptive queue size or the possibility to drop only some classes of jobs
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are not considered in the experiments. Indeed, taking into account all these options would
result in combinatorial explosion of the parameter space. This would make the analysis
hard to perform and to present in the space of a single research paper. Every sensor sends
jobs to just one fog node, and the sensor-to-fog mapping is statically assigned. The delay
experienced every time a job is forwarded corresponds to the network latency between each
pair of fog nodes that is δ = 0.9s (that is the network delayδ is comparable with the average
service time 1/µ). In this scenario the simulation considers a set of 50 fog nodes, that
should be enough to capture the main characteristics of the algorithm performance. Each
simulation is repeated 5 times and the results are averaged over the runs.

The second scenario, called realistic scenario, is based on a smart city case study based
in Modena, a city in northern Italy with roughly 180’000 inhabitants. The fog infrastructure
aims to support a smart city application that provides environmental sensing and vehicular
traffic monitoring. Sensors located along the main city streets collect data on air quality (e.g.,
atmospheric pollutants such as suspended particulate) and vehicular traffic (e.g., number
and speed of vehicles). The goal is to provide in real time a detailed model on urban traffic
and air pollution. The fog layer is composed of fog nodes placed in facilities belonging to
the municipality that exchange information with the sensors and among themselves using
long-range wireless links (such as IEEE 802.11ah/802.11af [20]). Each sensor communicates
with the nearest fog node, as in [9], and we assume the delay among fog nodes to be
proportional to the distance between them. Concerning the processing capability of the fog
nodes, we developed a prototype software that counts the number of vehicles in a frame
taken from a camera connected to the sensor. Based on these experiments, we modeled
the processing time using a Gaussian probability distribution with an average 1/µ = 10ms
(and with a standard deviation of 1ms). The network delay is proportional to the distance
between nodes, but, throughout the infrastructure, is normalized to have an average delay of
δ = 10ms, that is comparable with the processing time. As in the previous scenario, we also
introduce a population of A nodes that are faster and are characterized by a processing rate
that is double compared to the standard B-class nodes (µA = 2µB). We select 10% of the
nodes as being of A-class, and the selected nodes are the ones receiving the highest amount
of jobs from the sensors. The process of producing images from the sensors is modeled using
an exponential distribution. The topology is generated from real geographic data using
the PAFFI framework [17], with 100 sensors and 20 fog nodes. The geographic placement
of sensors, results in heterogeneous workload distributions among the nodes, ranging from
250 jobs/sec to some fog nodes that are almost idle. The average load over the whole
infrastructure is such that the average utilization ρ = λ/µ = 0.9.

We summarize the main parameters of the realistic scenario in Fig. 4. Each fog node is
represented by means of two circles: the thin circle represents its incoming load, while the
thick circle is the processing power. If the thin circle is outside the thick one, the node is
at risk of overload. Otherwise, if the thin circle is inside the thick one, no overload should
occur. Moreover, in this figure we represent A and B fog nodes classes using two different
colors (purple and green, respectively).

From a software tools point of view, the simulation is based on the Omnet++ frame-
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work3, with additional modules developed ad-hoc to support the two proposed load balancing
algorithms.

Throughout the performance evaluation, the main considered performance metrics are:

• Loss rate, that is the probability of a job being dropped because the queue of the
selected fog node is full. This condition is described for the model in Sec. 4.1.1.

• Response time, that is the time occurring between the moment the job is received
from the first fog node, to the moment the processing ends on the final fog node.
The response time model is described in Sec. 4.1.2. In our experiments, we provide
a breakdown of the response time components: that are service time (TSrv, the time
spent being processed), balancer time (TBal, the time spent being forwarded among
the fog nodes), and queuing time (TQueue, the time spent in the fog node ready queue
waiting to be processed).

As a reference for the reader we summarize symbols and metrics in Table 2, together
with their units of measure.

5.2. Simulation validation

The first step in our analysis is a cross-validation between the results obtained with
the simulator and the results of the theoretical model described in Sec. 4. Specifically, we
compare the performance of the sequential forwarding algorithm in the simplified scenario
with restrictive hypotheses that are: NA = NB (that is we have the same amount of A-class

3https://omnetpp.org/
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Table 2: Parameters and metrics for the proposed experimental scenarios.

Scenario parameters

NA, NB Percentage of type A nodes (B) [%]
λA, λB incoming job rate in type A nodes (B) [jobs/s]
µA, µB processing rate of type A nodes (B) [jobs/s]
ΘA, ΘB Threshold on type A nodes (B)
M Maximum number of steps
Q Maximum queue length

Metrics

TResp Response time. Time elapsed between receiving a job from a sensor
and completing its processing. TResp = TBal + TQueue + TSrv [s]

TBal Time spent in the load balancing phase [s]
TQueue Time spent waiting in queue [s]
TSrv Time spent being processed (= 1/µ) [s]
Drop rate Fraction of job dropped (values in range [0, 1])

and B-class nodes such that the probabilities α and β are the same), µA = µB, ΘA = ΘB.
Furthermore, due to the limitation of the model, we set the maximum number of hops
M = 1.
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Figure 5: Comparison with model (M = 1)

Fig. 5 compares the drop rate and the response times as a function of ΘA = ΘB. We
show both the sequential forwarding algorithm and the case where no load balancing occurs.

Focusing on Fig. 5a on the drop rate (that corresponds with the blocking probability in
the theoretical model of Sec. 4.1.1), we observe that the performance of the No LB case is
poor, with a loss rate close to 5%. For the proposed algorithm both the simulation and the
model confirm a similar behavior resulting in a U-shaped curve where the values of ΘA = ΘB
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very high or very low provide higher drop rates. Indeed, when the threshold is low, most
jobs are forwarded to a random neighbor that may be overloaded. In a similar way, when the
threshold is high, the jobs are unlikely to be forwarded and are processed locally even is the
node is at risk of overload. Finally, comparing the results of the model and the simulator,
we observe that both approaches capture the main characteristics of the algorithm. The
discrepancy in the numeric value is likely due to the relatively low number of nodes used in
the simulation.

Fig. 5b shows the response time of a job using both the simulator and the model, com-
pared with the case where no load balancing occurs. Again, we observe that the simulator
and the model present a similar behavior, with a range of threshold values (ΘA = ΘB < 7)
where the proposed algorithm outperforms the case where no load balancing occurs (please
note that the relatively good performance of the non-cooperative approach are due to the
high loss rate that reduces the amount of jobs that are served).

5.3. Evaluation in the simplified scenario

We now provide a more detailed analysis of the proposed algorithms carried out with
the simulator.
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Fig. 6 shows the response time for the same conditions considered in Sec. 5.2, focusing on
the sequential forwarding algorithm with M = 10 (as we are no longer comparing our results
with the model, we no longer need to limit the number of hops). We also provide a breakdown
of the response time (TResp, purple line with empty squares) in its main component. As
expected the service time (TSrv, yellow line with filled circles) corresponds to 1/µA = 1/µB
and does not depend on the threshold. The balancer time (TBal, green line with filled squares)
decreases as the threshold grows making the load balancing less aggressive; however, as the
load balancer becomes less aggressive, we accept to process jobs on nodes with a longer queue,
thus explaining the increase in the queuing time (TQueue, blue line with empty circles). The
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combination of these contributions determines a local minimum of TResp for ΘA = ΘB = 3.
It is worth to note the similarities among Fig. 6 and Fig. 2 of the model, although M is
different in the two cases. Comparing the Sequential Forward algorithm with the NoLB
alternative the results are clearly in favor of our proposal, with a response time reduced by
19% (3.77s vs. 4.64s) and a drop rate reduced by a factor of nearly 17 (0.3% vs. 5%)

Having discussed the behavior of the sequential forwarding algorithm in this simple
experimental setup, we now introduce the impact of having parameters that differ for the
two classes of fog nodes.
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Figure 7: Response time and Drop rate, NA = 50%, NB = 50%, µA = 1.0, µB = 1.0

In Fig. 7 we still focus on a case where NA = NB, µA = µB to understand the impact of
the different threshold values ΘA and ΘB over the infrastructure. In particular, we consider
the drop rate and the response time as the main performance metrics.

Fig. 7a shows the response time as a function of ΘA and ΘB. If we cut the surface for
ΘA = ΘB, we obtain the curve in Fig. 6. Considering the whole space, we observe that,
when a threshold (for example ΘA) is very low, we experience an increase of response time
due to the higher number of hops experienced by the jobs passing trough the node of that
class (in the example, A). As the threshold increases (again, let us consider the case where
ΘA grows), we accept to process jobs on A-class nodes with a higher load. This increases
the queuing time, and, as a result, leads to higher response times. The figure shows the
presence of an optimal configuration for the response time when ΘA = ΘB = 3.

Fig. 7b shows the drop rate. Again, we observe that, as ΘA = ΘB we have the U-shaped
curve similar to the one in Fig. 5a. On the other hand, as we explore a parameter space
where, for example ΘA � ΘB, the low threshold in the A-class nodes determines a higher
load in the B-class nodes (a similar behavior is shown for Fig. 2 in Sec. 4) resulting in a
global increase of the drop rate. The same effect occurs for ΘB � ΘA. As for the results
in Fig 7a, we observe a configuration (ΘA = ΘB = 6) that minimizes the drop rate. The
results are consistent with the findings of Tab. 1 obtained using the theoretical model.
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5.4. Sensitivity to µA

Having provided some insight on the behavior of the Sequential Forwarding algorithm,
we now consider how its performance is affected by a change in the processing power of
the A-class nodes. For this analysis, we consider a population with 50% A-class nodes and
50% B-class nodes. Throughout our experiments µB = 1.0 jobs/s while µA ∈ [1.0, 2.0]
jobs/s. Again we point out that, unlike the experiments in Sec. 4, we have λA = λB = λ for
both A-class and B-class fog nodes and λ grows with the average computing power of the
infrastructure so that the average utilization of the infrastructure is ρ = 0.9. This means
that, for same configurations we have a potential overload of half of the infrastructure,
creating a major challenge for the load balancing algorithms.
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Figure 8: Response time for different µA

Figure 8 shows the average response time as a function of ΘA, ΘB and describes how such
metric changes with µA for three values of µA. We observe that as the A-class nodes become
more powerful, the surface becomes asymmetric stretching towards increasing values of ΘA.
Contour lines in Fig. 8a and 8b help observe this effect. However, as µA approaches 2.0 the
shape of the curve changes significantly. This is caused by the incoming load λ exceeding
the µB. As a consequence a large fraction of the infrastructure is at risk of overload and the
low response times for high threshold values (e.g., ΘA = 10,ΘB = 3) corresponds to trashing
conditions of the system with a significant drop rate (in some cases higher than 10%).

We now provide a comparison of the alternatives. In particular, we focus on the No LB
case, on the Sequential Forwarding and on the Adaptive Forwarding algorithms. For the
Sequential Forwarding algorithm, we tune ΘA and ΘB (for every value of µA) to provide
the best response time without causing unacceptably high drop rates. For the adaptive
algorithm, that aims at requiring little tuning, we consider the same value of M for every
µA (the value M = 6 was found in preliminary experiments as a good trade-off between
a smooth increase in the threshold and the ability to adapt to heterogeneous conditions
reducing the number of hops).

For each column in Fig. 9a we provide a breakdown of the response time divided in
service time (TSrv, solid color, bottom part of the histogram), queuing time (TQueue, crossed
pattern, middle part of the histogram) and balancing time (TBal oblique pattern, top of
the histogram). In the no LB case, the balancing time is obviously absent. Looking at
the response time histograms we observe a general performance degradation for the two
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Figure 9: Response time and Drop rate for different µA

proposed algorithms as µA grows. This is due to the scenario that increases lambda as µA
increases. For high values of lambda, half of the infrastructure is at risk of overload with
the twofold effect of the need to forward more jobs (resulting in a growth of TBal) and of
increasing the waiting time as the queue tends to be longer in the nodes at risk of overload
(explaining the increase in TQueue). The No LB case seems to provide better performance as
the load increases, but this is an effect of the high drop rate shown in Fig. 9b that increases
with the load. Indeed, for the NoLB approach the drop rate increases from 5% to 13.7%.
For the cooperative algorithms, the drop rate remains below 1% as long as µA remains less
or equal to 1.75, and in the worst case (µA = 2.0) it reaches 2.5 for the Sequential Forward
algorithm and remains below 2% for the Adaptive Sequential one. Hence the drop rate
for the proposed algorithms remains from 19 to 5.5 times lower compared to the NoLB
alternative.

Comparing the Sequential Forwarding and the Adaptive Forwarding algorithms, we ob-
serve that the two alternatives provide similar performance, with the adaptive solution
offering slightly better performance in terms of drop rate and the sequential forwarding
achieving slightly lower response times. However, it is worth to note that the adaptive
algorithm provides a major advantage as it can reach a performance level similar to the
Sequential Forwarding alternative but does not require a complex tuning of the threshold.

5.5. Sensitivity to NA and NB

The second sensitivity analysis carried out in our experiments concerns the ratio between
the A-class and the B-class nodes. In this case, we keep the values of µA and µB fixed
(µA = 1.5, µB = 1.0 jobs/s).

As in the previous sensitivity analysis, Fig. 10 shows the response time for different
percentages of A-class and B-class nodes (represented with the NA and NB parameters).
We observe that the overall shape of the surface remains similar. However, as we reduce the
number of A-class nodes, we observe that the contour lines of the figures become more and
more similar to parallel lines in the direction of a single value of ΘB. This means that the
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Figure 10: Response time for different NA, NB

weight of the ΘA parameter becomes less and less significant compared to ΘB. On one hand,
this result is expected because, as we reduce the number of fast A-class nodes, the slower
and more numerous B class nodes become the real bottleneck of the infrastructure. On the
other hand, this result provides an important lesson to learn: adding a few powerful nodes
in a slow infrastructure is unlikely to solve any performance problem unless an adequate
tuning of the large fraction of the remaining nodes is carried out.
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Figure 11: Response time and Drop rate for different NA, NB

Figure 11 summarizes the main findings of the sensitivity analysis with respect to the
NA, NB parameters. As in the previous analysis, we present a breakdown of the response
time with service time (TSrv), queuing time (TQueue) and balancing time (TBal) in Fig. 11a.
Again, for the Sequential Forwarding algorithm, the results are referred to the best scenario
for every (ΘA,ΘB) couple considered, while for the Adaptive Forwarding algorithm we relay
on the initial tuning. Fig. 11b shows the drop rate for the various considered alternatives.
From a comparison of the three considered options, the No LB is clearly the worse solution,
with higher drop rate and higher response time (in this case the infrastructure does not reach
a level of trashing such that the drop rate reduces significantly the response time). Indeed,
the response time remains from 11% to 19% higher compared to the proposed algorithms

21



while the drop rate of the NoLB approach remains roughly 15 times higher compared to our
proposals.

On the other hand, the two other load balancing algorithms provide similar performance
in terms of drop rate and response time, confirming the main finding of Sec. 5.4.

5.6. Evaluation in the realistic scenario

We now focus on the realistic scenario, that is a case where loads are unevenly distributed
over the fog nodes, the network link delays are uneven and where the processing time is no
longer described as an exponential (that is the fog nodes are described as M/G/1/Q queuing
network elements). We recall that in this scenario, the setup is based on a geographic
placement of nodes based on real locations.

Fig. 12 provides a performance evaluation for the different considered algorithms in
terms of response time. Specifically, Fig. 12a shows the response time for the Sequential
Forwarding algorithm as a function of the threshold ΘA and ΘB. We confirm the main
findings of Sec. 5.5 about the major impact of the threshold ΘB that affects the performance
of the more numerous slower nodes. However, the high incoming load in the A-class nodes
(we recall that in this scenario λA � λB due to the criteria used to select the A-class nodes)
makes the impact of the parameter ΘA less negligible compared to the analysis in 5.5. Using
the results in Fig. 12a to tune the Sequential Forwarding algorithm, in Fig. 12b we compare
the response times of the three considered alternatives, that is the No LB case, and the
Sequential Forwarding and Adaptive Forwarding algorithms. As in the previous analyses,
for the adaptive algorithm, we consider M = 6 that is the value identified previously as a
value providing good and stable performance. It is worth to note that we do not provide
a figure concerning the drop rate because the two algorithms that provide load balancing
have a drop rate very low (less than 0.2%), while the No LB alternative is characterized by
a drop rate in the order of 13%.
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Figure 12: Performance evaluation in the realistic scenario

The main outcome of this comparison confirms the main finding of the previous exper-
iments: the two load balancing algorithms provide similar performance both in terms of
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response time and drop rate (response time between 19 and 21 ms, with a drop rate in
both cases below 0.2%) and far outperform the NoLB approach that is characterized by a
response time nearly double compared to our algorithms. However, we point out once again
that the good performance of the sequential forwarding algorithm is the result of careful
tuning of the algorithm parameters, while the adaptive alternative provides good and stable
performance with minimal effort.

6. Conclusions and Future Work

Throughout this paper, we proposed two innovative algorithms, namely Sequential For-
warding and Adaptive Forwarding, that aims to provide load balancing in a fog computing
infrastructure. The two algorithms are explicitly designed to be extremely simple and to be
fully distributed to provide a fair load sharing in highly heterogeneous scenarios with variable
workload levels and high network delays that are typical characteristics of fog computing.

The analysis of the protocol is strongly focused on exploring the impact of heterogeneous
fog infrastructure on the behavior of the algorithms. We consider a population of fog nodes
that differ for number, processing power and configuration, exploring the impact of each
aspect on the overall system performance. Our tests consider both a simplified and controlled
environment (used for the sensitivity analyses) and a realistic scenario based on the design of
a geographic deployment of a smart city fog infrastructure. Another qualifying point of our
analysis is that we combine both a mathematical model and a simulation-based approach,
to cross-validate our main findings.

The results of our experiments suggest that the proposed algorithms clearly outperform
the case where no load balancing is applied with a reduction in the drop rate by a factor of
19 and by a reduction in the response time up to 19%. The results in a realistic scenario
are even more impressive as we can nearly halve the response time and we can reduce the
loss rate from 13% to less than 0.2%.

As a further remark, we point out that the self-tuning adaptation mechanism of the
Adaptive Forwarding algorithm provides stable performance in terms of low response time
and low loss rate comparable with the Sequential Forwarding algorithm, but it does not
require a careful parameter tuning, and therefore, it is easier to deploy in real and highly
heterogeneous scenarios.

Finally, in this paper we focused on the basic behavior of the algorithm. Additional
features such as managing jobs with different priorities and different dropping policies is an
interesting space not considered in the present paper but that could be addressed in future
works.
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