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Abstract. Cooperative Web caching is the most common solution for
augmenting the low cache hit rates due to single proxies. However, both
purely hierarchical and flat architectures suffer from scalability problems
due to cooperation protocol overheads. We present a new cooperative
architecture that organizes cache servers in well connected clusters and
implements a novel cooperation model based on a two-tier lookup pro-
cess. The experimental results carried out on a working prototype show
that the proposed architecture is really effective in supporting cooper-
ative Web caching because it guarantees cache hit rates comparable to
those of the most performing architectures and it reduces cooperation
overhead at a small fraction of that of other protocols.

1 Introduction

Web caching has evolved as the first way to deal with performance and network
resource utilization issues related to the growth of popularity of the World Wide
Web. The idea is quite simple. Instead of connecting to a “far” and possibly
overloaded Web server, the client request reaches a proxy server, that hosts
resources frequently requested by a set of clients in a cache server “nearer” than
the origin server.

The main problem of this approach is that the cache hit rate of one proxy
server can be really low. The proposed solutions aim to establish interactions
among various proxies. Global caching or cooperative caching architectures are
used by public organizations (e.g., IRCache [1]), Internet Service Providers (e.g.,
AT&T [2]), third party companies, such as Content Delivery Networks (e.g.,
Akamai [3], Digital Island [4]). Cooperation among Web caches has been widely
studied. For some recent surveys, see [5, 6] or [7, 8]. Cooperation among cache
servers can occur for several reasons, but the most important motivations are:
cache content lookup (cooperative lookup), data placement and document re-
moval. In this paper, we focus on cooperative lookup. The two most popular
approaches for cooperative lookup refer to a hierarchy of cooperating caches
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(hierarchical architecture) or to a flat cooperation topology (distributed architec-
tures).

In hierarchical architectures a cache miss will result in looking for the resource
to an upper level cache [9]. In distributed architectures every cache is supposed at
the same level, and missed resources at one proxy are looked for in all cooperating
cache servers. Hybrid architectures have been studied as well [6]. In this paper
we refer to distributed architectures.

Any cooperation among a set of distributed servers has to decide a protocol
and an implementation technique for exchanging some local state information
which, in the case of cooperative lookup, basically refers to cache content (al-
though other information can be useful, such as network and/or server load
conditions). The two opposite approaches for sharing state information are well
defined in literature: on-demand protocols in which state information exchanges
occur only in response to a client request, and the family of informed proto-
cols in which state information is exchanged periodically or when (significant)
state modifications occur. ICP [10] and Summary Cache [11] are examples of the
former and latter protocols, respectively.

The main drawback of any pure approach to Web caching cooperation is its
lack of scalability because lookup latency and/or amount of data exchanges for
cooperation augment dramatically for higher numbers of cooperating nodes. For
example, on-demand protocols require a query/response message to/from each
cache server for every local miss, moreover they risk that state information from
“far” cooperative cache servers is received well beyond the chosen threshold (e.g.,
2 seconds is the default limit for ICP). On the other hand, periodic exchanges of
state information among all cache servers are impracticable when the number of
cooperative nodes is high or there are many “far” nodes. In these instances, to
limit protocol overheads, state refreshments should occur sporadically, but this
would affect the nature itself of an informed protocol because of high risks of
distributing stale state information.

The main claim of this paper, also validated through extensive simulations
in [12], is that a better scalability for caching cooperation can be achieved only by
architectures that use hybrid protocols. Indeed, each protocol has some tradeoff
and its pros can be exploited by taking into consideration the network char-
acteristics of the geographically distributed system. A multi-tier architecture
may allow the cooperation of more cache servers with a potential increase of hit
rate or permit a better usage of network resources by reducing the lookup time
or the bandwidth overheads for coordination among cache servers. A two-tier
architecture is the simplest form of a multi-tier architecture, where the basic
concept is that cache servers can be distinguished between “near” (that is, well
connected nodes) and “far” (that is, nodes connected through multiple network
hops and/or through possibly highly loaded links). The two-tier approach aims
at being more flexible and scalable than other cooperation mechanisms: first-
level lookup cooperation occurs only among limited sets of “near” cache servers
with the goal of minimizing lookup latency; second-level lookup cooperation in-



volves only some representative “far” cache servers with the goal of minimizing
amount of exchanged information needed for cooperation.

Another advantage of two-tier cooperation derives from the logical distinc-
tion maintained between the two levels. In such a way, integration of existing
distributed caches (e.g., a group of proxies cooperating with CRISP [13]) into
a two-tier infrastructure becomes easier because such a group of cooperating
caches can become a first tier cluster with little modifications.

The contribution of this paper is twofold. We propose the architecture of a
new prototype of cooperative cache servers where the nodes are organized in
clusters (intra-cluster and inter-cluster cooperation protocols has been imple-
mented by modifying the Squid software [14]). Moreover, we present a set of
experimental results showing that the proposed prototype offers a good hit rate
with a cooperation overhead significatively lower than that of other cooperation
mechanisms.

The rest of this paper is organized as following. Section 2 describes the intra-
cluster and inter-cluster cooperation protocols that are modified versions of the
2TC protocol proposed in [12]. Section 3 discusses the architecture of the pro-
totype by evidencing main modifications made in Squid. Section 4 describes the
experiments and compares the results with those of other cooperative and non-
cooperative protocols. Section 5 contains an overview of existing approaches to
cooperation. Section 6 summarizes the results of this paper.

2 Two-tier Web caching architecture

The problem of lookup cooperation between proxy servers is essentially a prob-
lem of state information exchange within the components of a distributed system
where the nodes are connected through heterogeneous links.

Let us consider an initial set S of proxy servers {P1, . . . , Pn}. Let Ci be a
subset of S such that

⋃n
i=1 Ci = S.

The number of cache servers inside Ci is chosen to allow cooperation with-
out incurring in performance penalties caused by scalability issues. Moreover,
consider that this clustering is done in a way such that cache servers inside the
same cluster are “near”, whereas cache servers belonging to different clusters are
“far”. The distance between nodes can be calculated by considering static (e.g.,
number of hops) or dynamic information (e.g., Round-Trip Time), although the
concept of Internet vicinity is still an open issue. Figure 1 shows an example
of clustering, where grouping corresponds to a partition of the set S. This is
not a requirement for the proposed architecture because some overlapping is ac-
ceptable. However, for the sake of simplicity, in this paper we assume that the
clusterization phase gives a partition of the available cache servers. The problem
of finding an optimal clustering is out of the scope of this paper. It can be easily
solved by management motivations (e.g., because the organization can find more
convenient to place sets of cache servers in specific regions and none in others),
by geographical considerations at different levels of granularity (for example, a
coarse grain choice could be to consider four partitions of cache servers: East US,



West US, Asia, and Europe) or by more sophisticated optimization algorithms
(e.g., the Goemans-Williamson algorithm [15]).

Fig. 1. Clustering of proxy server.

Intra-cluster cooperation is the most used mechanism, so it should be done
through a protocol that offers a fast lookup, to keep the latency at acceptable
levels. Assuming that the cache servers in the same cluster are well intercon-
nected, the cost of frequent data exchanges occurring “off-line” is affordable.
This makes the use of an informed protocol appealing because it offers a lookup
extremely fast (if not false hits occur), typically done on some sort of hash table
structure kept in RAM.

Inter-cluster cooperation occurs among “far” cache servers that are possibly
connected through congested and limited bandwidth links. Hence, it is important
to use cooperation protocols that limit the waste of network resources. An on-
demand protocol could be a good choice because it is activated only consequently
to a client request. Unlike an informed protocol, it works “on-line” and exchanges
state information only when necessary. The drawback is that this choice tends
to increase the latency time of an inter-cluster lookup.

In the following subsections we describe the intra-cluster and inter-cluster
protocols implemented in the proposed two-tier Web caching architecture.

2.1 Intra-cluster cooperation

Intra-cluster cooperation is implemented through the Cache Digests protocol.
This means that each cache server is informed about the resources stored in any
other cache of the cluster.

A local miss in the first contacted cache server activates a lookup process that
scans the local information about cooperating caches to check whether another
node has the required resource. This cluster lookup phase can result in a cluster



hit or in a cluster miss. A cluster miss activates the inter-cluster cooperation. A
cluster hit allows the retrieval of the object from another cache server of the same
cluster. Figure 2 shows this process: the cache lookup on P2 (step 1) returns a
cache digest hit (step 2) and the resource is retrieved from cache P3 through an
HTTP connection (step 3).

Fig. 2. Two-tier architecture: cluster hit.

In fact, the cluster lookup phase process can lead also to false hit or false
miss because of stale state information or digest inaccuracy. To limit hit rate loss
due to false positive or false negative, it is possible to augment the frequency of
information exchanged among the caches of the cluster, and the precision (and
the size) of exchanged digests. Anyway, the common rule is that the closer is the
cooperation, the lesser nodes should be in the cluster.

In the case of false hit, the resource is fetched directly from the origin server
to reduce latency time.

2.2 Inter-cluster cooperation

A cluster miss activates the inter-cluster cooperation. An on-demand protocol
is used to contact cache servers belonging to other clusters. In the architecture
described in this paper, inter-cluster cooperation occurs only among special cache
servers, called master caches.

The reference architecture for two-tier cooperation is a mesh of peer cache
servers: there are no parent nodes with respect to the retrieval of documents.
A master cache acts as a parent for on-demand protocols: when a query must
be sent to a cache server not belonging to the same cluster, the query is sent to
the master cache of the cluster and the duty of contacting other clusters is left
to it. This approach allows an easier configuration of the system of cooperative
clusters: cache servers inside each cluster need to know only which caches belongs
to the same cluster and which of them is the master. The master cache needs
only one more information about which are the masters of the other clusters.



Fig. 3. Master proxy in the 2TC implementation

Figure 3 shows how a master proxy works: P2 needs to use the second tier of
2TC because lookup in cluster cache digests returned a cluster miss. P2 knows
nothing about other clusters. Its only duty is to send a query to its master
M1 using CMP (Cache-to-Master Protocol, described in section 3.2) as shown
in step 1. The master cache sends a query to all other masters through the
ICP protocol (step 2). The masters of the other clusters check in their cache
digests if the required resource is present in some cache server of its cluster and
then returns a response (step 3) of hit (M2) or miss (M3). ICP uses a timeout
mechanism to detect message loss (as for the one sent by M4). The information
is then sent back to the first proxy using CMP (step 4). In the case of global hit,
the resource is retrieved through a normal HTTP connection (step 5).

Each master is informed about the content of the caches in its cluster because
of the informed-based protocol used at the first cooperation level, so it can
immediately return a message of cluster hit or miss. In the case of cache hit, the
master returns also the address of the cache server that holds a valid copy of
the requested document (in Figure 3 M2 returns the address of P6). It should
be noted that the inter-cluster cooperation too is subject to false hit and false
miss, because it relies on the informed cooperation protocol at the cluster level.

In summary, for each client request we can have one of the following four
scenarios.



– Local hit when a valid copy of the requested resource is inside the first
contacted cache server. The document is sent to the client and no cooperation
is necessary.

– Cluster hit when the requested resource is found in the cache server of
the same cluster (Pj ∈ Ci) to which the first contacted node belongs to.
The intra-cluster cooperation protocol does not require message exchanges
among caches during the lookup phase.

– Global hit when the resource is retrieved from a proxy Pk /∈ Ci. As the
intra-cluster cooperation determines a cluster miss, the inter-cluster cooper-
ation protocol is activated. The hit is due to a cache server not belonging to
the first contacted cluster.

– Global miss when the resource must be retrieved from the original server.
Both cooperation levels fails in finding a valid copy of the resource in other
cooperative cache servers or the first level incurred in a false hit.

3 Prototype implementation of the two-tier architecture

The two-tier cooperation architecture was implemented by modifying Squid
2.4 [14], a well known and widely used proxy server. The main modifications
to the Squid software are localized in the modules called peer selection and
neighbors [16]. The peer selection module contains the routines that selects a
cache that may hold the requested resource and is used in the phase called coop-
eration in Figure 4. This phase is activated by a client request that results in a
local miss or in a local hit with a stale file. The peer selection module uses other
modules that implement some cooperation protocols, such as ICP and CMP.

The neighbors module contains the data-structure definitions and the routines
to manage the database of cooperating proxies and the statistics about their
state.

We also created a quite new module to support the Cache-to-Master protocol
described in Section 3.2.

Fig. 4. Service of a client request by Squid.



3.1 Modifications to the peer selection module

The default Squid behavior for the cooperation phase shown in Figure 4 carries
out a one-step lookup over the known active cooperating caches. This step can
be done through multiple protocols such as ICP [10], HTCP [17], CRISP [18],
depending on the compile-time options and on the configuration of the caches.

The main modification of our cooperative Web caching architecture makes
this operation a two-step process: if the normal lookup fails (in the case of cluster-
miss) a second step is activated, and the CMP protocol is used for inter-cluster
lookup.

3.2 Cache-to-Master Protocol

The Cache-to-Master Protocol (CMP) is used to manage the intercommunication
between the two levels of the two-tier architecture. CMP is essentially a modified
version of ICP, designed to be lighter and simpler than the original ICP protocol.

Both ICP and CMP have a sender address field. However, its use is quite dif-
ferent. In ICP this field is considered untrusted, and the information is usually
taken from the lower level protocols. In our prototype architecture, a master
proxy can report a hit referred to another cache. Hence, in both CMP and
ICP responses the sender address contains the IP address of the cache hold-
ing the requested document. This approach was preferred to that based on the
ICP OP MISS POINTER opcode. There are two motivations for this choice.
The opcode is still experimental, and our choice kept our prototype simpler with-
out disrupting its ability to cooperate with existing proxy servers. For example,
hit referring to other caches are discarded by the standard ICP implementation
as malformed messages, thus preserving the original ICP behavior.

The use of a master proxy to communicate with other clusters is a two-way
process: both queries and replies pass through the master. This is necessary to
avoid the risk of cache poisoning: cache hit in unknown proxies are trusted only
if signalled by the cluster master, which is trusted.

3.3 Modifications to the neighbors module

The implementation of CMP required a modification of the neighbors module.
For security reasons, Squid does not fetch resources from unknown proxies, but
this would not allow inter-cluster cooperation.

Each proxy knows only the caches belonging to its cluster. With the modified
module, when a CMP HIT reply pointing to a previously unknown proxy is
received, the module that manages this protocol calls a function in the neighbors
module that dynamically adds a new entry to the list of known proxies. In such
a way, the Web objects are always retrieved from known peers even if they come
from caches of other clusters.



4 Experimental results

4.1 System configuration

The prototype of the cooperative Web caching architecture was tested on a clus-
ter of nine PCs running Linux. Eight PCs hosted a proxy server and an HTTP
workload generator. The nineth PC hosted an HTTP server. We used Web-
Polygraph version 2.5 [19] as a workload generator. The results were collected
from the Squid logs and do not refer to latency times. The proxies were config-
ured in order to implement four cooperation mechanisms, namely no cooperation,
Cache Digests, ICP and 2TC. The first was used as a comparison for the other
scenarios. For Cache Digests and ICP the proxies were configured to let each
cache cooperate with each other, while for the last architecture we organized the
cache servers in two clusters each composed of four nodes.

To emulate a steady-state initial cache population, all experiments were done
twice and collected information referred only to the last one.

4.2 Workload model

The workload model was based on that used in the second cache-off promoted by
IRCache. We used a mix of content types made as following: images 65%, HTML
documents 15%, binary data 0.5%, others 19.5%. Table 1 reports minimum,
maximum and mean size for each type of object.

10% of requests were referred to hot resources. The hot set was 1% of the
working set. Only 50% of the requests of each client was taken from a public set
of pages, common to all clients. Each client was configured to visit more than
once only 80% of the URLs. HTML resources could contain embedded objects.

Each proxy served requests coming from 5 clients. The working set of each
cache was 47MB, corresponding to about 4250 URLs. It changed over time during
the experiment, so that the global working set was 157 MB for each cache,
corresponding to nearly 14200 URLs. The whole system of cooperating caches
dealed with a 180.5 MB of documents, that generated over time a global working
set of 601.8 MB. The caches were configured to hold no more than 30 MB of
data each, so that each cache server could keep 5% of the global working set.

Type Min size (KB) Max size (KB) Mean size (KB)

images 0.5 49 4.5

html 0.5 77.5 8.5

binary data 24 1577 300

other 7.5 89 25

Table 1. Hit Rate



4.3 Performance results

The experiments were focused on obtaining two performance indices, that is:
object hit rate, and protocol overheads due to cooperation. It is worth to observe
that no latency measure was collected, hence it was not a problem to use cache
servers belonging to the same local network.

Figure 5(a) reports same indices contained in Table 2. The object hit rate
(HR) was divided into local HR (clients requests that were served without any
cooperation), cluster HR (when a cache server belonging to the same cluster
provided the object), and global HR (when a cache server belonging to other
cluster provided the object). Of course, cluster HR has no meaning for ICP
and Cache Digests architectures because their cache servers are not organized
in clusters. We found that the differences in the local hit rate were induced by
changes in the access locality caused by the cooperation.

(a) Hit Rate (b) Global traffic for Coordination

Fig. 5. Experimental results

Coordination Local HR Cluster HR Global HR

No Cooperation 39.84 n/a 39.84

Cache Digests 35.57 n/a 42.09

ICP 37.99 n/a 54.89

2TC 35.28 42.83 53.63

Table 2. Hit Rate

The protocol overhead was measured both as an absolute value and as a
per-request overhead. In Table 3, column 2 and in Figure 5(b), we reported the



traffic generated for coordination purposes. The traffic produced by 2TC was
composed of traffic generated by Cache Digests exchange (3331.65 KB), CMP
queries and replies (20259.35 KB) and ICP messages (20907.80 KB). In column
3 of Table 3, we compared how many bytes for each request were necessary for
cooperation among cache servers. Considering that the request size was between
500 bytes and 1.5 MB, with a mean of 11 KB, the cooperation overhead for ICP
seems acceptable in a well connected network environment but can be intolerable
for a geographic environment.

Coordination KB for coord.
Bytes for coordi-
nation per request

No Cooperation 0 0

Cache Digests 790 3

ICP 207064 811

2TC 44499 140

Table 3. Traffic for coordination

Our experiments show that the proposed cooperative Web caching architec-
ture offers high hit rates, slightly lower than that of ICP, which gave the best
hit rate in our test-bed scenarios. It is even remarkable that the proposed ar-
chitecture introduces much less traffic (i.e., less than 20%) for cooperation than
that needed by ICP.

These results demonstrate that the proposed cooperation protocol reaches its
goal because it offers high cache hit rate with an overhead much lower than that
of other approaches. This positive combination is the first step to guarantee
scalability of the architecture when the number of cooperative cache servers
augments significantly.

5 Related work

The issues related to cooperative cache lookup have been addressed in many
ways, but the main philosophy behind them, except for a few exceptions, are
two: on-demand protocols and informed-based protocols.

On-demand protocols are activated at lookup-time. They are typically de-
signed to be fast and lightweight, usually relying on UDP messages. The most
important of those protocol is ICP [10]. It was proposed as a part of the Har-
vest project and then adopted in many other proxy servers, such as Squid and
NetCache. UDP is not a reliable protocol, so it can happen that a message is
lost. ICP uses a timeout mechanism to detect packet loss and not well connected
proxies.

ICP scales poorly: increasing the number of cooperating proxies leads to
a quadratic increment of coordination traffic and increases the probability of
packet loss (proportional to 1 − (1 − Perr1)N [20]), thus increasing the latency



time because of more requests being served only after the timeout has expired.
Additionally, ICP does not support HTTP/1.1 caching directive semantics, so it
is subject to false hit and false miss due to different freshness parameters among
caches.

This last ICP problem was addressed by the HTCP protocol [17], which is
more expressive, although more complicated than its predecessor. Scalability
issues remains similarl to those that affect ICP.

Informed-based protocols uses a completely different approach to coopera-
tion: information exchange occurs before the lookup phase, that in such a way
becomes much faster than that of on-demand protocols. Information exchange
can be periodic or synchronous. This latter form requires some message exchange
at the occurrence of any new event and guarantees strong consistency. Neverthe-
less, it introduces big overheads, so that state information is usually exchanged
in an asynchronous way, through some form of compression, even if this form
of cooperation may cause stale state information. Particularly useful is a lossy
compression called Bloom filters [21] used by Summary Cache [11] and Cache
Digests [22]. There is a well known trade-off between cooperation effectiveness
and scalability of informed-based protocols: to increase the first it is necessary to
exchange state information more frequently and to use more accurate description
of cache contents. This increases network resource usage and leads to scalability
problems.

Pure versions of on-demand and informed-based protocols have one trait in
common: both them performs the cooperation as a one-step process. A different
scheme is proposed by CARP [23, 24] that uses an implicit cooperation that does
not need any message exchange among the cache servers. The main drawback
of CARP is its static nature, that makes this protocol not suitable when cache
servers are geographically distributed and network status is subject to variations,
as it is the typical case of Internet.

A hybrid cooperation protocol that is more related to the 2TC protocol is
CRISP by Chase et al. [13, 18]. Similarly to 2TC, CRISP combines an informed
protocol with a query approach to build a scalable cooperation mechanism. Un-
like the cooperative Web caching architecture discussed in this paper, CRISP
relies on a centralized directory that makes this architecture not scalable in a
geographic network environment, as observed by the same authors [25].

6 Conclusions

This paper presents a novel architecture for cooperative Web caching based on a
two-tier cluster-based lookup process. The prototype has been implemented by
modifying the Squid proxy server. Experiments carried out through an artificial
workload based on Polygraph show that the proposed architecture guarantees
better scalability because its object hit rates are comparable to those of ICP,
the best performing protocol (about 50%), but its overhead due to cooperation
is much lower (140 bytes per request vs. 811 bytes).
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