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Abstract—The Fog Computing paradigm is increasingly seen
as the most promising solution to support Internet of Things
applications and satisfy their requirements in terms of response
time and Service Level Agreements. For these applications, fog
computing offers the great advantage of reducing the response
time thanks to the layer of intermediate nodes able to perform
pre-processing, filtering and other computational tasks. However,
the design of a fog computing infrastructure opens new issues
concerning the allocation of data flows coming from sensors over
the fog nodes, and the choice of the number of the fog nodes
to be activated. Many studies rely on a simplified assumption
based on a M/M/1 theoretical queuing model to determine
the optimal solution for the fog infrastructure design, but such
simplification may result in a mismatch between predicted and
achieved performance of the model. In this paper, we measure
the aforementioned discordance in terms of response time and
SLA compliance. Furthermore, we explore the impact of non-
Poissonian service models and validate our results by means of
simulation. Our experiments demonstrate that the use of M/M/1
model could lead to SLA violations. On the other hand, the use
of sophisticated models for the estimation of the response time
can avoid this problem.

Index Terms—Fog Computing, Performance Model, Error
Evaluation, Simulation

I. INTRODUCTION

Fog computing [1], [2] is seen as a promising solution
to manage the increasingly popular Internet of Things (IoT)
applications, typically based on distributed sensors collect-
ing large amounts of data to be processed under specific
constraints of response time and Service Level Agreements
(SLAs).

IoT applications range from autonomous driving, smart
cities, e-health, up to industry 4.0 environment, and offer
valued added services to support decision-making systems and
quality of life [3], [4]. Since these applications usually require
pre-processing, filtering and aggregating steps on the data
collected by sensors, fog computing may offer significant ad-
vantages in terms of performance and SLA compliance. A fog-
based approach, indeed, allows many tasks to be performed
on fog nodes, located on the edge of the network close to the
sensors, limiting the communications with remote cloud data
centers, where only refined information are sent for additional
analysis and storage [5], [6]. This approach can guarantee a
lower response times to latency-sensible applications, that are
now partially executed directly on the network edge.

The increased complexity caused by the presence of an
intermediate level of distributed fog nodes opens novel issues
concerning the infrastructure design and management. One
of the most critical issues is related to the allocation of the
data flows coming from sensors over the fog nodes of the
intermediate layer and the decision about the number of fog
nodes to be activated. To define the optimal configuration of
the fog infrastructure, researchers typically rely on numeric
solutions based on theoretical models: in particular, many
studies [7]–[10] rely on a simplified assumption based on a
M/M/1 queuing theoretical model to describe the fog node
behavior and evaluate the system performance. However, this
assumption may result in a mismatch between predicted and
actual performance in terms of response times and compliance
to SLA.

The main contribution of this paper is the evaluation of
the error introduced by the assumption of a M/M/1-based
model in the optimization of the mapping of sensor data flows
over the nodes of the fog infrastructure. Our theoretical results
are validated by means of a simulator, where we integrated
an optimization heuristic based on genetic algorithms. We
compare the predicted infrastructure performance, obtained
through the theoretical models, with the one estimated through
simulation. Furthermore, we explore the impact of non-
Poissonian service models on the infrastructure response times
and SLA compliance. Our experimental results, based on a
realistic scenario of smart city application, show a mismatch
between the predicted performance and the simulation output.
In particular, we demonstrate that the simplified model based
on M/M/1 can lead to violations of the SLA requirements and
that a more accurate estimation, based on a M/G/1 model,
allows to eliminate the mismatch.

The rest of this paper is organized as following. Section II
discusses some related works. Section III describes the perfor-
mance models. In Section IV we compare the fog infrastruc-
ture performance based on the traditional M/M/1 theoretical
model with the performance estimated using simulation and
based on non-Poissonian service models. Finally, conclusions
and future research directions are provided in Section V.

II. RELATED WORK

Several studies already evidenced the potential of the fog
computing paradigm to address the requirements of applica-
tions that must process a huge volume of data coming from978-1-7281-8326-8/20/$31.00 ©2020 IEEE



a plethora of geographically distributed devices [11]–[13]. In
this section we briefly analyze the relevant research papers
related to the issue of optimizing the design of a fog computing
infrastructure; specifically, we focus on the issue of allocating
the data flows coming from sensors over the distributed nodes
of the fog layer.

A large part of literature is focused on the problem of
allocating services over a fog infrastructure. As an example,
Deng et al. [11] propose an optimization model that aims at
reducing the power consumption and transmission delay, but it
considers just the fog to cloud communication, discarding the
impact of sensors placement on the problem. In a similar way,
Yousefpour et al. [14] focus on a fog-to-fog communication
for load sharing with the same limitation of not taking into
account the impact of the sensors location on the data transfer.
Both the above-mentioned papers assume that the sensor-
to-fog mapping is forced by either sensor communication
range [11] or by some application deployment constraint [14].
Our research starts from a different assumption: we consider
a network layer capable of long-range communications or that
implements a multi-hop link strategy allowing every sensor to
communicate with every fog node. A recent study [15] solved
the problem of locating fog nodes when human mobility is
considered, aiming at processing most of the workload in
fog nodes but activating the minimum possible number of
servers, as well as by using the spare capacity of fog nodes
to process the flexible latency workload to reduce the latency
of users. The solution presented in [16] is based on a periodic
distribution of the incoming tasks among the nodes of the edge
computing network so to increase the number of tasks that
can be processed, while satisfying the quality-of-service (QoS)
requirements for the completion of the tasks. The assumption
behind this model, however, is about a different context:
indeed, the authors assume that a batch of tasks to be assigned
is always available, i.e., the tasks are not processed online as
in our solution.

An approach based on genetic algorithms to allocate ser-
vices over the nodes of the fog infrastructure was proposed
by the same authors in [17]: such solution is considered in
this paper as the heuristic to solve the optimization problem of
services allocation. However, this paper focuses on a different
issue, that is the analysis of the error introduced by the
simplified assumption of a M/M/1 queuing theoretical model
to describe the fog nodes behavior within the optimization
problem. The above assumption is exploited by several stud-
ies [7]–[10] to model the behavior of computational nodes in
distributed cloud and fog-based scenarios. By integrating the
optimization heuristic into a network simulator, in this paper
we compare the expected fog infrastructure performance, as
resulting from the theoretical model, with the performance
estimated using simulation and demonstrate that the use of
the M/M/1 assumption can lead to SLA violations.

III. PERFORMANCE MODELS

In this section we describe the theoretical models used for
the design and performance estimation of a fog computing

Fig. 1: Model overview

infrastructure. Specifically, we introduce the heuristic used
to design a fog infrastructure and we present the simulation
setup used to evaluate the performance of a fog infrastructure
deployment.

A. Fog infrastructure model

The overall model of the fog infrastructure can be summa-
rized as in Fig. 1. A set of sources send jobs in the form of
data to process to a layer of fog nodes (in the figure only the
generic fog node j is shown). We assume that the generation of
a job can be triggered by an unpredictable event that can occur
at any time. For this reason, we assume that the job arrival
is a Poisson process where inter-arrival time exponentially
distributed and where each sensor sends data with a given
rate λ1 . . . , λi, . . . , λs.

The source-to-fog data transmission is subject to network
delay, that is modeled as a delay with an average value that
depends on the distance between the sensors and the fog node.
We denote as δi,j the delay between the generic sensor i and
the fog node j. From preliminary experiments on IoT wireless
devices we derived a model where delay follows a normal
distribution.

The fog node is modeled as a server with queue. The
processing occurs with a rate equal to µj for the generic fog
node j. We assume that the data flows originated from sensors
pass through fog nodes, that carry out a set of intermediate
processing such as data validation, aggregation, dimensionality
reduction. The processed information is then sent to a cloud
data center.

Having defined the overall model for the fog infrastructure,
we now introduce the performance models used to describe the
fog node behavior. To this aim, we identify two cases: in the
first model we assume that processing can end at any time, thus
classifying the model as a M/M/1 model; in the second model
we consider that processing can follow an arbitrary distribution
of probability, such as normal or log-normal. In this latter case
we describe our model as a M/G/1 queue.

For the M/M/1 model we can derive from the queuing
network theory the expected processing time TP in the fog



node, that is:

TP =
1

µ− λ
(1)

Where, for the generic node j we have µ = µj , and, for the
incoming load, the arrival rate is the sum of the arrival rates
of the sensors connected to the fog node: λ = λj =

∑
i λi.

For the M/G/1 model we use the Pollaczek Khinchin
formula for the estimation of the processing time that is:

TP =
1

µ

(
1 +

1 + CoV2

2
· ρ

1− ρ

)
(2)

Where ρ = λ/µ and CoV is the coefficient of variation
(standard deviation divided by average, that is CoV = σ/x)
of the service time.

B. Optimization problem

Having defined the performance framework of a generic fog
infrastructure, we now discuss the main problem of designing
a fog infrastructure. We assume to have a set of sensors and
we aim to map data flows from these sensors over a set of
fog nodes. In this problem we aim to reach two goals. First,
we want to use the minimum possible amount of fog nodes
necessary to have a response time that satisfy the Service Level
Agreement. Second, we want to minimize the response time
by avoiding overload on the fog nodes (that would increase
the processing time) and by having sensors that communicate
with the nearby fog nodes, to reduce the network delay. A
model for this problem have been proposed in [18], that we
use as the basis for our study. In the problem formulation we
refer to Tab. I for the notation used in the definition of the
optimization problem.

TABLE I: Notation and parameters for the optimization model.

Model parameters

S Set of sensors
F Set of fog nodes
λi Outgoing data rate from sensor i
λj Incoming data rate at fog node j
1/µj Processing time at fog node j
σj Std. dev of processing time at fog node j
δij Delay between sensor i and fog j
cj Cost for using fog node j

Model indices

i Index for a sensor
j Index for a fog node

Decision variables

Ej Enabling fog node j
xij Allocation of sensor i to fog j

We can summarize the optimization problem as follows:

Minimize:

C =
∑
j∈F

cjEj (3)

TR = TN + TP (4)
Subject to:

TR ≤ TSLA (5)
λj ≤ Ejµj , ∀j ∈ F (6)∑

j∈F
xij = 1, ∀i ∈ S, (7)

Ej ∈ {0, 1}, ∀j ∈ F (8)
xij ∈ {0, 1}, ∀i ∈ S, j ∈ F (9)

The optimization problem is a multi-objective optimization
with several constraints. The decision variables are Ej to
describe the status of fog nodes (Ej = 1⇒ fog node j can be
used), and xi,j to describe data flow allocation (xi,j = 1 ⇒
sensor i sends data to fog node j).

In Eq. (3) we aim to reduce the total infrastructure cost C,
that depends on the cost of each fog node and on the number
of fog nodes used. Eq. (4) presents the second objective of
our problem, that is the performance of the fog infrastructure.
Specifically, TR is the average response time where we point
out its two components TN that is the network delay and TP
that is the processing time.

The first constraint, shown in Eq. (5), is related to the respect
of SLA. The SLA is expressed in the form of a limit on the
maximum acceptable response time. In the following of the
analysis we assume the maximum response time to be:

TSLA = K · 1

µ
+ δ (10)

Where K is a constant (typically K = 10), 1/µ is the average
service time of the fog infrastructure nodes and δ is the average
network delay.

Another constraint, in Eq. (6), has the double function of
excluding traffic from a fog node not used (Ej = 0) and to
avoid overload on the used node. The case where λj = µj is
excluded by the SLA constraint. The incoming traffic λj of a
generic fog node j can be expressed as:

λj =
∑
i∈S

λixi,j (11)

The last set of constraints concerns allocation of data flows
that must go from one sensor to exactly one fog node,
according to Eq. (7), while the Boolean nature of decision
variables is described in Eq. (8), (9).

To better understand the problem, we discuss the perfor-
mance related objective function Eq. (4). The network delay
TN can be expressed as in Eq. (12), that is weighted mean of
link delays, where the weight is the amount of traffic λixi,j
passing for each source-to-fog link. The processing time TP is



described in Eq. (13), that is derived from the M/M/1 model
in Eq. (1).

TN =
1

Λ

∑
i∈S

∑
j∈F

λixijδij (12)

TP =
1

Λ

∑
j∈F

λj
1

µj − λj
(13)

For the sake of simplicity we express the sum of incoming
data rates as Λ =

∑
j∈F λj =

∑
i∈S λi.

C. Heuristic solution

To solve the optimization problem previously described, we
rely on a genetic algorithm as in [17]. The two optimization
goals are considered to be organized in a hierarchy. First,
assuming a uniform cost for all the fog nodes, we aim to
reduce the number of fog nodes used. As long as the number
of fog nodes remains the same, we organize the infrastructure
with the goal to optimize the performance. From the heuristic
point of view, this means that we estimate a suitable value
for the number of fog nodes and we solve the problem
transforming the goal (3) in a constraint. If the solution is
infeasible, we increase the number of fog nodes and we re-
iterate the genetic algorithm until a feasible solution is found.

For the estimation of the number of fog nodes N we derive
a lower bound from Eq. (5). In the analysis we assume that the
infrastructure is uniform, that is µj = µ for every fog node.
However, a more complex formulation of the estimate can be
used to cope with a heterogeneous scenario. We can express
the processing time using (1), and approximate the network
delay with δ. If we assume a case of perfect load balancing
(that is the optimal condition we are looking for), we have
that λj = (Λ/N). We can thus define the minimum number
of fog nodes as:

N =
∑
j∈F

Ej ≥
⌈

Λ

µ
· K − 1

K

⌉
(14)

The estimation in Eq. (14) is based on the performance
model of a M/M/1 system. This may result in a wrong
estimation when the arrival process is non-Poissonian. In this
case we can apply Eq. (2) in Eq. (5). Follow the same process
used to obtain Eq. (14), we can estimate for the number of
required fog nodes as:

N ≥
⌈

Λ

µ
· CoV2 − 2K − 1

2K − 2

⌉
(15)

To solve the problem with a genetic algorithm, we must
define a problem representation where each solution can be
embedded in a chromosome. To this aim, we encode the
solution using two separate part of each chromosome. The
first part is an array F of N elements that contains the list of
fog nodes used in a solution (for the generic element of the
array Fi ∈ [1, |F|]); this part of the solution representation is
used to describe the Ej decision variables. The second part of
the chromosome is an array S of |S| elements that maps the
sensors on the fog nodes, where the fog nodes are encoded

using the first part of the chromosome (in such a way that
Si ∈ [1, N ]); this latter part of the chromosome corresponds
to the xi,j decision variables.

For the genetic algorithm we implement the mutation
and crossover operators adapting the uniform mutation and
crossover operators preserving the peculiarity of the chromo-
some representation (that is no duplicates in the array F and
correct bounds in the values assumed by the elements in the
array F and S). A tournament selection operator is used to
prune unfit solutions from the genetic pool.

D. Simulation support

A contribution of this paper is the integration of the
optimization heuristic into a simulator for the performance
evaluation of the fog infrastructure. Specifically, we use the
Omnet++ discrete event simulation framework1.

The simulation setup is controlled by the solution of the
optimization problem generated by the genetic algorithm.
The simulation integrates such solution through the problem
parameters. We have a vector of processing rates for each
fog node and a set of transmission rates for the sensors.
Furthermore, we have a topology of the network, with the
sensor-to-fog connections and their delay. The simulator mod-
els the sensors as data sources, where the send interval of
data is a random variable. The fog nodes are simulated using
servers with a queue. Aiming to evaluate multiple models for
service time distribution, the simulator handles multiple setups
where the service time has the same average value, but can be
described by different probability distributions. Finally, a delay
center in the sensor-to-fog path models the network delay. For
the delay center the waiting time is a random variable with
an average based on the geographic distance between sensors
and fog nodes.

We recall that, to create a model for the network perfor-
mance, we know the locations of the fog nodes and of the
sensors that are based on geo-referenced landmarks. When
the simulation setup is generated, the script computes the
geographic bounding box of the fog infrastructure and can
generate a map of the area of interest using the Overpass
API for Open Street Map2 and Osmarender3. Fig. 2 presents
a screenshot of the simulator with a map representation of the
problem.

IV. EXPERIMENTAL RESULTS

We now outline the experiments carried out to compare
the expected fog infrastructure performance, as resulting from
the theoretical model, with the performance estimated using
simulation.

A. Experimental setup

The reference application considered in our experiments
aims to enable smart cities services, according to existing
literature and projects [3], [19]. Specifically, the considered

1https://omnetpp.org/
2https://overpass-api.de
3https://wiki.openstreetmap.org/wiki/Osmarender



Fig. 2: Omnet++ Simulation

application relies on a set of simple sensors that collect
data, ranging from air quality samples to the availability
of parking slots; additional sensors on smart traffic lights
collect images to monitor traffic congestion and to support
autonomous driving. We assume that samples are activated by
external events (such as cars passing, parking or by changes in
air quality); hence, notifications can occur any time following
a memory-less Poisson process with an average inter-arrival
time denoted as λ. Fog nodes are located in municipality
buildings and collect data from sensors through long-range
wireless links. We do not make assumption on the service time
distribution, but we simply denote as µ the average service rate
of fog nodes.

In our experiments we start with a theoretical model that is
embedded in the GA-based infrastructure design. We estimate
the number of fog nodes using Eq. (14) in Sec. III-C and we
optimize the sensor-to-fog nodes mapping using the genetic
algorithm. It is worth to note that we consider the traditional
M/M/1 theoretical model as the basis for the performance
model in the genetic algorithm, as discussed in Sec. III-B.

In our analyses, we validate our theoretical results and we
explore the impact of non-Poissonian service model using
a simulator. The service time model is embedded in the
Omnet++ simulator setup and the probability distribution
functions are defined in Tab. II. Every simulation is run 10
times and the results are averaged over multiple runs. When
presenting the simulation results we provide an averaged value
over the runs and the standard deviation to provide also
confidence intervals.

Model name PDF

Exponential xe−xx

Normal max(0, 1√
2πσ2

e
− (x−x)2

2σ2 )

Log-normal 1

x
√
2πσ2

e
− (ln x−x)2

2σ2

TABLE II: PDF of service time models

In the description of probability distributions we use the
symbol x for the average value and σ for its standard de-

viation. In our experiments we consider, besides the classical
exponential distribution that is typical of a Poissonian process,
also a truncated normal distribution (a Gaussian function with
only positive values) and a log-normal distribution. In all the
experiments the average service time x = 1/µ = 10 ms. The
standard deviation of service time σ is equal to x for the
exponential distribution, meaning the coefficient of variation
CoV = σ/x = 1. For the Normal distribution CoV = 0.1.
Finally, for the log-normal distribution we consider three cases
where CoV ∈ {0.5, 1, 1.5}.

Fig. 3: Service time

The service time distributions, taken from the simulation
results are provided in Fig. 3.

The network delay of each link is modeled as a truncated
normal distribution (with only positive values) with CoV =
0.1. The delay of each wireless link is considered proportional
to the link length as in [17] and the average link delay over the
infrastructure is set to 10 ms, which is consistent with the typi-
cal delay measured in preliminary experiments on a prototype.
The resulting probability distribution of network-related delays
is a Mixture-of-Gaussian. Specifically, the solution found by
the genetic algorithm to connect sensors and fog nodes in our
experiments determines a network delay distribution like in
Fig. 4. We report just a curve as the network delay is the same
for every service time model (network delay is only influenced
by the network topology).

Finally, Fig. 5 represents a histogram of the response time
depending on the service time probability distribution. Re-
sponse time includes the following contributions: (1) Network
delay, (2) Service Time, and (3) Queuing Time. Network
delay is the delay introduced by network data transfer and
has already been presented in Fig. 4; Service Time has been
presented in Fig. 3. Queuing time depends on the probability
of finding the server busy and having to wait for the queue
to be emptied. This time depends on the average service time
as well as on the statistical properties of the service process.
It is worth to note that, even if the mode of the response
time appears to be quite similar in every scenario with a peak
close to 20 ms), the occurrence of cases where the response



Fig. 4: Network delay

time is significantly higher is evident as most curves (with
the exception of the Normal service time distribution) fail to
reach a value close to 0 in the rightmost part of the graph.
The presence of this tail may affect the average response time
of the fog infrastructure, motivating our subsequent analysis.

Fig. 5: Response Time

B. Comparison with simulation

The next analysis carried out is presented in Fig. 6. The
histogram provides a comparison of the average total response
time (rightmost set of columns) for every considered service
time model and for the theoretical model used in the optimiza-
tion function. Furthermore, the figure presents the components
of the response time: left set of columns for network delay and
center set of columns for processing.

Starting with the network time contribution, we confirm that
the topology of the optimal solution is the same for every
scenario. Therefore, as pointed out when discussing Fig. 4,
the network time contribution is the same for every service
time model. Furthermore, we observe that the average delay
is close 10ms, that is consistent with the average network delay
shown for the theoretical model in the red column.

Fig. 6: Base model vs. simulation

Considering the processing time, we have two contributions
for this metric, that are the actual time spent being processed
(crossed pattern at the bottom of the columns) and the time
spent by jobs waiting in queue to be processed. As the average
service time is the same, the first contribution is the same for
every scenario, with a value of 1/µ = 10 ms. Considering
the queuing time, we observe that actual model for service
time determines highly different values. Indeed, if we compare
the exponential model, we observe that the processing time is
very close to the theoretical model. On the other hand, the
Normal service time model and the Log-normal (CoV = 0.5)
determines a processing time that is the 37.7% and 30.1%
lower than the theoretical model, respectively. On the other
hand the Log-normal (CoV = 1) provides performance close
to the theoretical model while the case when CoV = 1.5
causes a processing time that is 50.1% higher than the M/M/1
reference.

The impact of service distribution time on queuing explains
the mismatch between the predicted performance and the
simulation results, again 34.1% faster for the normal model
and 43% slower for the Log-normal (CoV = 1.5) service
time distribution.

C. SLA violations

The errors introduced by the simplified assumption of
using a M/M/1 model determines a mismatch between the
predicted performance and the simulation output. However, the
simple M/M/1 response time formulation and a more com-
plex approach, such as the one achieved using the Pollaczek
Khinchin formula, or even an estimation based on simulation,
provide strongly correlated results. This means that optimal
configuration selected with a simplified model is, in most
cases, optimal or very close to the optimum also when a more
sophisticated performance model is used.

However, if a simplified model can be used to find the
optimum, the same assumption is no longer true when we
aim to asses the compliance with SLA requirements. To better
explain this scenario, we consider the estimation of the number



of fog nodes that are to be used in (14). We consider the highly
challenging scenario where service time is modeled using a
Log-normal with CoV = 1.5.

Fig. 7: SLA compliance

Fig. 7 presents the number of active fog nodes as a function
of the number of sensors in the fog infrastructure together
with the response time estimations. Specifically, the purple
step-wise curve is the number of fog nodes. The green curve
with empty squares is the response time based on the M/M/1
model used to select the number of fog nodes. We observe
that the response time estimation is always below the red line
of the expected SLA (we consider TSLA as in Eq. (10) with
K = 10). On the other hand, if we consider the experimental
result with the measured response time, we observe several
SLA violations.

We can thus conclude that, when defining the requirements
of the infrastructure to comply with SLA requirements, a
simplified model based on the theory of M/M/1 systems can
lead to errors and a more accurate estimation should be used.

D. Use of M/G/1 model

Fig. 8: Improved model vs. simulation

As a final experiment we demonstrate how an improved
theoretical model can improve the SLA compliance.

First, we show the effect of using the Pollaczek Khinchin
formula as an alternative estimation for the expected response
time in the objective function. Fig. 8 shows, for every service
time model, the experimental results for the response time and
the estimation based on the network delay and the processing
time computing with the Pollaczek Khinchin formula. We ob-
serve that, for every considered scenario, the theoretical model
(with oblique lines) matches almost perfectly the simulation
results, thus demonstrating the effectiveness of this level of
detail in the model.

Next, we evaluate how an improved response time model
can reduce the SLA violations. In Fig. 9 we apply Eq. (15) to
the estimation of the number of nodes. The purple line is the
M/M/1 estimate based on Eq. (14) used also in Fig. 7. The
green line is the updated estimation of the required nodes. The
blue line is the response time of a system where the service
time follows a Log-normal distribution with CoV = 1.5.
Unlike the case in Fig. 7, no SLA violations occurs, demon-
strating the correctness of the proposed model.

Fig. 9: SLA compliance with M/G/1 model

V. CONCLUSIONS

In this paper we focus on the critical role of fog computing
as the enabling paradigm for the support of modern IoT
applications, with a specific attention to the critical issue
of allocating sensor data flows over the nodes of the fog
infrastructure. As many studies in literature assume a M/M/1
queuing model to describe the fog node behavior, we analyze
the impact of such simplified assumption on the performance
of the fog infrastructure. To this aim, we explore the effect of
non-Poissonian service models and measure the discordance
between predicted and achieved response times. Furthermore,
we validate our results by means of a simulator. For our
experiments, we consider a realistic scenario based on a smart
city applications, with distributed sensors collecting data from
the environment and fog nodes located in city municipality
buildings. The experimental results proved that a simplified



theoretical model could lead to errors up to 50% in the
estimation of the response time and, as a consequence, to
SLA violations. Finally, we demonstrated how an improved
response time theoretical model based on a M/G/1 allows to
effectively reduce the SLA violations.
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