
Collaboration Strategies for Fog Computing under
Heterogeneous Network-bound Scenarios

Claudia Canali, Riccardo Lancellotti, Simone Mione
Department of Engineering ”Enzo Ferrari”,
University of Modena and Reggio Emilia,

Email: claudia.canali@unimore.it, riccardo.lancellotti@unimore.it, 205212@studenti.unimore.it

Abstract—The success of IoT applications increases the num-
ber of online devices and motivates the adoption of a fog
computing paradigm to support large and widely distributed
infrastructures. However, the heterogeneity of nodes and their
connections requires the introduction of load balancing strategies
to guarantee efficient operations. This aspect is particularly
critical when some nodes are characterized by high communica-
tion delays. Some proposals such as the Sequential Forwarding
algorithm have been presented in literature to provide load
balancing in fog computing systems. However, such algorithms
have not been studied for a wide range of working parameters in
an heterogeneous infrastructure; furthermore, these algorithms
are not designed to take advantage from highly heterogeneous
network delays that are common in fog infrastructures. The
contribution of this study is twofold: first, we evaluate the per-
formance of the sequential forwarding algorithm for several load
and delay conditions; second, we propose and test a delay-aware
version of the algorithm that takes into account the presence
of highly variable node connectivity in the infrastructure. The
results of our experiments, carried out using a realistic network
topology, demonstrate that a delay-blind approach to sequential
forwarding may determine poor performance in the load bal-
ancing when network delay represents a major contribution to
the response time. Furthermore, we show that the delay-aware
variant of the algorithm may provide a benefit in this case, with
a reduction in the response time up to 6%.

Index Terms—Fog Computing, Load-balancing, Simulation,
Sequential Forwarding algorithm, Delay-aware algorithm

I. INTRODUCTION

The increasing popularity of Internet of Things (IoT) ap-
plications based on the processing of data coming from
geographically distributed sensors and online devices has lead
to the adoption of the fog computing paradigm as a promising
approach for the supporting infrastructures [1], [2]. In a fog
computing infrastructure we place an intermediate layer of
fog nodes located at the edge of the network. As shown in
Fig. 1, these fog nodes act as intermediary between a plethora
of sensors that collect data from the a wide range of activities
following the IoT vision (bottom of the figure) and one or more
cloud data centers that store the data and provide added values
information extraction on them. See [3] for a more in-depth
description of IoT-based innovative services. The fog nodes
can perform several useful tasks such as filtering, aggregation,
and alert triggering. These pre-processing steps occur close to
the end-devices, thus reducing the volume of data exchanged
with the cloud infrastructure and the response time experiences

by the IoT applications tasks. The presence of an intermediate
level of fog nodes is particularly advantageous in case of
applications with critical requirements in terms of low and pre-
dictable latency such as gaming and augmented reality, control
of autonomous vehicles, vehicular traffic monitoring [4]. The
use of fog computing systems, however, opens new research
issues in terms of strategies for resource allocation due to finite
resources at the fog level, increasing number and complexity
of applications, and heterogeneity of incoming load due to
mobile traffic [5], [6]. Load balancing, in particular, represents
a critical feature for the system performance in complex
scenarios where the network delays between the constituting
elements of the infrastructure can be highly heterogeneous and
the workload intensity can vary over time.

Fig. 1: Fog computing infrastructure

Several solutions for load balancing in fog computing
systems available in literature rely on a centralized component
that acts as load orchestrator [7], [8]. A fully centralized
approach can achieve competitive performance, but has the
weakness of high computational complexity and huge report-
ing overhead. Other solutions, based on a distributed approach,
typically assume that each node has some knowledge of the
load on (all or a subset of) other nodes to make an informed
selection of the fog node to forward the incoming task [9].
This approach requires some specific protocol to send updates978-1-7281-8326-8/20/$31.00 ©2020 IEEE

on the load state of each fog node and may cause high
traffic overload on the network, with the risk of delayed
and stale information about the nodes load. Moreover, the
load balancing mechanisms currently available in literature
are typically unaware of the heterogeneous network delay that
can characterize the fog infrastructures. For these reasons, our
study focuses on a fully distributed load balancing approach,
that does not require any exchange of load information among
fog nodes, and investigates the impact of delay awareness on
load balancing under different load and network conditions.

The contribution of this paper is twofold. First, we carry out
a comprehensive evaluation of an existing alternative approach
based on random walks, namely sequential forwarding [10].
Specifically, we consider a wide range of scenarios by varying
the system load and the ratio between the network delay and
the task service time (thus creating CPU- and Network-bound
scenarios) to fully understand the behavior of this delay-blind
load balancing algorithm. Second, we propose an improved
delay-aware version of the sequential forwarding algorithm
that is able to take advantage from the knowledge of the
infrastructure delays among fog nodes. We evaluate the effects
of the delay-aware approach on the system performance by
means of simulation considering the main elements of the
fog infrastructure placed according to a realistic topology. The
results of our experiments show that a delay-aware mechanism
is effective in reducing the time spent to forward jobs among
neighbors. Moreover, our experiments evidence how delay
awareness may in some cases decrease the effectiveness of
the load balancing due to a less randomized choice of the
destination fog node. However, delay awareness provides
significant benefits when the scenario is network-bound, that
is when network delay represents a major contribution to the
response time, leading to a reduction in response time up to
6%.

The rest of this paper is organized as following. Section II
describes the proposed algorithm. In Section III we provide an
experimental evaluation of the proposed algorithm. Section IV
discusses related works while conclusions and future research
directions are provided in Section V.

II. ALGORITHM

In this section we present the main algorithms considered
in this research for load balancing in a fog scenario. First, we
present the basic Sequential Forwarding algorithm introduced
in [10]. Considering that a heterogeneous fog structure also
from a connectivity point of view is common in the real
world, we consider scenarios where the network delay can
have a major impact on the overall system response time and
where network delay between each couple of fog nodes cab be
highly variable. This motivates the proposal of a Delay-Aware
Sequential Forwarding algorithm that forwards the jobs just
to a set of the closest neighbors and with a probability that
favors the closest ones.

A. Sequential forwarding algorithm

We now discuss the Sequential Forwarding algorithm (orig-
inally proposed in [10]) that is a basis for our analysis. The
algorithm uses a threshold Θ to decide if an incoming job
must be forwarded to a neighbor or not. Furthermore, the
algorithm relies on an additional parameter H (that is the a
maximum number of forwarding hops), in order to guarantee
an upper limit on the delay experienced by each job during the
load balancing phase. A detailed description of the sequential
forwarding algorithm is provided in [10]. In this paper we
explore in detail the performance of this algorithm and we
use this analysis as a basis for the proposal of a delay-aware
algorithm.

Algorithm 1 Sequential Forwarding Algorithm

Require: H , Θ, Job
if Job.Hops() ≥ H then

ProcessLocally(Job)
else

if System.Load() ≤ Θ then
ProcessLocally(Job)

else
Neigh ← SelectNeighbor()
Job.IncrementSteps()
Forward(Job, Neigh)

end if
end if

The Sequential Forwarding is detailed in Alg. 1. The two
nested if statements are used to handle the maximum number
of hops H and the threshold Θ. We assume that the data
structure describing the job is enriched with meta-data to keep
track of the number of times a job is forwarded. The job is
forwarded to a neighbor if the local load exceeds a threshold Θ
and if the number of forwarding hops is less than H . Otherwise
the job is processed locally.

Algorithm 2 Local processing: ProcessLocally()

Require: Job
if System.Queue() < System.MaxQueue() then

Enqueue(Job)
else

Drop(Job)
end if

Algorithm 2 details the case where a node is processed
locally (that is when the ProcessLocally() procedure is called
in Alg. 1). In this case, the Job should be enqueued in the
ready queue of the server. However, since this queue is finite
in size, if the queue is already full, the job is dropped, resulting
in a loss.

Finally, in Alg. 3 we discuss the function SelectNeighbor()
used in Alg. 1. In the Sequential Forward algorithm, the func-
tion simply returns a random node among the list of neighbor
nodes. This function will be extended in the Delay-Aware

Algorithm 3 Neigh. Selection (delay-blind): SelectNeighbor()

N ← System.Neighbors()
return Random(N)

version of the Sequential forwarding algorithm described in
the next subsection.

B. Delay-Aware Sequential Forward

We now discuss the Delay-Aware Sequential forwarding
algorithm. The algorithm introduces two principles to take
advantage from the knowledge of the infrastructure delays
between fog nodes. Let i and j be two nodes of the infras-
tructure, We define as δi,j the delay between them. First, we
limit the number of possible neighbors that can receive a job
from a generic node i to the value of K. To this aim, we
introduce a set of nodes Mi (where |Mi| = K) that are the
K nearest neighbors to node i. The neighbor to which a job
is forwarded is selected from this set. Second, the probability
to select a neighbor node j node is inversely proportional to
the communication delay δi,j . We can define the probability
pi,jof selecting node j from node i for job forwarding as in
Eq. (1)

pi,j =

δ−1
i,j∑

l∈Mi
δ−1
i,l

, ifj ∈Mi

0, otherwise
(1)

where δi,j is the delay between node i and node j, and Mi

is the set of the K best connected neighbors to node i.
It is worth to note that the mechanism of weighted random

selection of the node may produce paths including the same
node more than once. However, the randomness involved in
the choice of the next hop determines an almost negligible
probability of having requests performing cycles among the
fog nodes. Moreover, a request reaching again a previous
node at a different time will find it in a different load
condition. These effects and their impact on the load balancing
performance are discussed in detail in [11].

Algorithm 4 Neigh. Selection (delay-aware): SelectNeighbor()

Require: K
N ← System.Neighbors()
D ← System.NeighborDistances()
M ← SelectNearestK(N , D, K)
P ← ComputeProbability(M, D)
return WeightedRandom(M, P)

Alg. 4 shows how the SelectNeighbor() function (introduced
in Alg. 1) is re-defined for the Delay-Aware Sequential For-
ward algorithm. We retrieve the information about the neigh-
bors and their distances (N and D sets). As we previously said,
a neighbor is selected in the set of the K nearest neighbors,
so we restrict our search to the set M (we omit the suffix i
for a leaner notation). Furthermore, we define the probability
of being selected as in Eq. (1). This set of probabilities is then
used for the actual neighbor selection.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the Se-
quential Forwarding algorithm [10], and we compare it with
its evolution Delay-Aware Sequential Forwarding. We start
describing the considered scenarios in our performance eval-
uations, next we discuss the main findings concerning the
Sequential Forwarding analyzing its performance over a wide
set of scenarios. To this aim, we use a simulative approach to
explore different network configurations and load conditions.
After this preliminary evaluation, we analyze the performance
of the Delay-Aware Sequential Forwarding algorithm focusing
on a set of the most significant scenarios.

A. Scenarios definition

In our experiments we consider a realistic scenario based on
a fog infrastructure, aiming to support a smart city application.
This infrastructure is highly heterogeneous, so some nodes
are near one to each other while others are characterized by
significantly higher network delays.

All the considered scenarios are based on a case study
carried out in Modena, a city in northern Italy of roughly
180’000 inhabitants. The proposed fog infrastructure uses a
set of fog nodes to collect data on the vehicular traffic and on
the air quality. The sensors for this application are placed on
the main city streets, while a the fog nodes are in facilities
belonging to the municipality. We use long-range wireless
links (for example, IEEE 802.11ah/802.11af [12]) to transfer
data from the sensors to the fog nodes and between pairs of
fog nodes. Each sensor sends the data to the nearest fog node,
that is common choice in smart sensing deployment [13]. In
most long-range wireless links the achievable data rate (that
is the available bandwidth) is inversely proportional to the
communication distance. From this observation, we assume
the delay among fog nodes to be proportional to the distance
between them. It is worth to note that the considered model
is a simple but effective approach to introduce distance-
related delays in a geographic infrastructure that has been
used in literature [14]. Other, non linear, distance-to-delay
relationships (e.g, quadratic or piece-wise interpolations) have
been evaluated in preliminary tests with limited differences
with respect to the setup used in these experiments. For this
reasons we opted for the simplest model available. The fog
node behavior is modeled based on a preliminary project
prototype. In the prototype a sensor captures images of the
street when movement is detected. The frames are sent to
the fog node that uses a neural network-based to identify
and count vehicles. This creates a real-time map of the traffic
intensity throughout the city. The process of sending images is
modeled using an exponential distribution. The time to process
a frame has been characterized on the prototype and can be
described using a Gaussian probability distribution with an
average value depending mainly from the image resolution.
In our experiments, we define the average processing time
1/µ = 10 ms (and with a standard deviation of 1ms). For
the average network delay δ we consider multiple values. In
particular, we introduce a scenario parameter δµ that is the

ratio between the average network delay δ and the average
processing time 1/µ. We consider values of the δµ scenario
parameter ranging form 0.1 (CPU-bound scenario) to 2 (net-
work bound scenario). The network topology is based on a
realistic setup of the fog infrastructure created using the PAFFI
framework [14], with 100 sensors and 20 fog nodes. Due the
geographic placement of elements, the workload intensity is
heterogeneous among the nodes, with the workload intensity
λ for each fog node ranging from 2.5 times the processing
rate of a fog node to some fog nodes that are almost idle. We
run the experiments with different average utilization ρ = λ/µ
(with λ being the average incoming job rate in the set of fog
nodes belonging to the infrastructure). The average load over
the whole infrastructure ρ ranges from 0.5 to 0.9, with a step
of 0.1. Furthermore, in our sequential forwarding algorithm,
we set the parameter H = 5 that is a value proved in
previous experiments to provide low response time and low
drop rate [10]. The maximum queue length is limited to 10
jobs, so Θ ∈ [1, 10]. In order to avoid an explosion of the
parameter space of our experiments, we omit some results
of our sensitivity analyses. In particular, we do not present
results whenever our tests show that a parameter has not a
major impact for our proposal or when our tests confirm results
already available in literature (especially in [10], [11]).

The simulation is based on the Omnet++ framework1, with
additional modules developed ad-hoc to support the sequential
forward algorithm and the nearest neighbors mechanism.

Throughout the performance evaluation, the main perfor-
mance metrics considered are:

• Response Time, that is the time occurring between the
moment the job is received from the first fog node, to
the moment the processing ends on the final fog node.

• Loss rate, that is the probability of a job being discarded
because the queue of the selected fog node is completely
full or the job is expired.

In some cases, we consider useful to provide a breakdown of
the response time components that are:

• Service time that is the time spent being processed
(average service time is 1/µ),

• Balancer time that is the time spent being forwarded
among the fog nodes for load balancing,

• Queuing time that is the time spent in the fog node ready
queue waiting to be processed.

B. Evaluation of Sequential Forwarding Algorithm

We now evaluate the performance of the Sequential For-
warding algorithm in different scenarios. This analysis aims
to understand how the load ρ and the impact of network delay
δµ affect the performance of the load balancing algorithm.

Fig. 2 shows the response time as a function of the threshold
Θ for ρ = 0.8 and δµ = 1.0. Furthermore we show a
breakdown of the response time components: balancer time,
queuing time and service time. While the service time is not
dependent from the threshold Θ, we observe that the balancer

1https://omnetpp.org/

Fig. 2: Breakdown of Response Time vs. Θ (δµ = 1.0 ρ = 0.8)

time decreases as Θ grows. Indeed, with an higher threshold
we activate less frequently the balancing mechanism. At the
same time, when we seldom use the load balancing, we are
more likely to observe longer queues, as testified by the
increase in the queuing time. The graph shows an optimal
point for Θ = 2 that minimizes the response time.

To better understand how the components of the response
time are affected by the scenario parameters δµ and ρ, we
now present, in Fig. 3, the threshold values which minimizes,
respectively, balancer time, queuing time and response time
(we recall that service time is not affected by Θ so we don’t
graph this component). In each heatmap, the color scale (on the
right of each figure) uses blue hues when the best value of Θ
is close to 1 and yellow hues when the optimal Θ approaches
the maximum value of 10.

Fig. 3a shows the threshold that minimizes the balancer
time. In most cases the time spent in load balancing is
minimized by the maximum threshold value Θ = 10 (as
suggested by Fig. 2). However, when the load is quite low
(e.g., ρ ≤ 0.7), the balancer time becomes negligible also
for lower threshold values, because the load balancing is
rarely needed. The reduction of the impact of network delay
(δµ) further reduces the absolute value of the balancer time,
accelerating the situation when the balancer time become
negligible for low values of Θ.

Conversely, Fig. 3b shows that value of Θ that minimizes
the queuing time depends mainly on the system load ρ. When
ρ ≤ 0.8 we observe the shape of the queuing time curve shown
in Fig. 2. On the other hand, when load is high, we there is a
minimum for the queuing time when Θ = 2.

To summarize, we have two contributions (balancer and
queuing times, respectively) that are reduced by opposite
values of the threshold. Fig. 3c shows that the threshold Θ
that minimizes the response time is 1 for δµ < 1 and ρ < 0.8.
When the network delay is low, the impact of the balancer time
is less evident and the queuing time dominates completely
the threshold choice. In the other hand, when δµ ≥ 1 or
ρ ≥ 0.8, we have a more evident impact of the balancer time

0.1

0.2

1.0

2.0

0.5 0.6 0.7 0.8 0.9

δ
 µ

ρ

Balancer Time

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h
re

s
h
o
ld

 Θ

(a) Minimize Balancer Time

0.1

0.2

1.0

2.0

0.5 0.6 0.7 0.8 0.9

δ
 µ

ρ

Queue Time

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h
re

s
h
o
ld

 Θ

(b) Minimize Queuing Time

0.1

0.2

1.0

2.0

0.5 0.6 0.7 0.8 0.9

δ
 µ

ρ

Response Time

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h
re

s
h
o
ld

 Θ

(c) Minimize Response Time

Fig. 3: Threshold Values to optimize different objectives

and avoiding the high number number of balancer activation
that characterized the case where Θ = 1 minimizes the overall
response time.

TResp

0.5
0.6

0.7
0.8

0.9
ρ

0.1

0.2

1.0

2.0

δ µ

 10
 15
 20
 25
 30
 35
 40

T
im

e
 [
m

s
]

Fig. 4: Minimum TResp w.r.t. δµ and ρ

To summarize the evaluation on the response time, Fig. 4
presents the best response time (considering the optimal values
of Θ in Fig. 3c) for every considered value of δµ and ρ. We
observe that the system utilization ρ determines an increase in
response time (due to longer queuing times in the nodes) and
we observe that this increase is more evident as δµ grows
(amplifying the contribution of the time spent in the load
balancer due to the higher network delays).

Another critical performance metric is the drop rate, shown
in Fig. 5 as a function of Θ. From the figure we observe that
the impact of δµ is almost negligible on this parameter. On the
other hand, we observe that when the system load is high (e.g.,
ρ = 0.8), the drop rate increases because the average queue
length grows, with a consequent increase in the probability of
saturating the queue. Furthermore, when the threshold is too
high (e.g., Θ ≥ 7), the packets loss is caused by the presence
of long queues in some nodes, because the load balancing
mechanism is not activated with a sufficient frequency to be
effective in avoiding overload.

Fig. 5: Drop Rate vs Threshold Θ.

C. Evaluation of Delay-Aware Sequential Forwarding Algo-
rithm

We now introduce the delay-aware mechanism in the load
balancing algorithm. This mechanism serves to take advantage
of the heterogeneity in the fog structure that is common in
real applications. However, it is worth to note that the delay
aware mechanism may have a twofold effect. On one hand, it
reduces the time related to network delays, reducing the load
balancer time. On the other hand, it reduces the randomness
of the neighbor selection mechanism (because we limit the
neighbor nodes and because we prefer closer nodes to more
distant ones). This may have a detrimental effect on the load
balancing. Depending on the values of ρ and δµ, we expect
one of the two effect to dominate the other. It is then important
to understand when the delay-aware mechanism can provide
an actual benefit.

Fig. 6 presents the performance of the delay-aware al-
gorithm for three significant examples: low load and CPU-
bound scenario (ρ = 0.5, δµ = 0.1), high load and balanced
network/CPU contributions scenario (ρ = 0.8, δµ = 1.0), high
load and network-bound scenario (ρ = 0.8, δµ = 2.0). For
each scenario we present the case where K = 1 (purple), that
is forwarding occurs only to the closest neighbor, K = 10

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

δµ=0.1, ρ=0.5, Θ=1 δµ=1.0, ρ=0.8, Θ=2 δµ=2.0, ρ=0.8, Θ=2

T
im

e
 [
m

s
]

K=1
K=10
K=20

No weight
TQueue

TBal
TSrv

Fig. 6: Impact of Delay-Awareness

(green), that is when only the 50% closest neighbors can be
selected for the forwarding. The last two columns (blue and
yellow) involve every neighbor in the selection, but in one
case we use weights in the selection (K = 20, blue color),
while the last case (namely “No weight”, yellow color) is the
traditional, not weighted, Sequential Forwarding algorithm.
Furthermore, in every column we present the breakdown of
response time into service time (solid color), balancer time
(grid pattern) and Queuing time (oblique lines pattern). From
the comparison we observe that the case where K = 1 result
in poor performance in every scenario because the forwarding
is deterministic and is not effective in sharing the load among
the nodes. We observe how the increase of the response time
is driven by an explosion of the queuing time, proof of the
poor load balancing. A similar effect on queuing time, even
if not so evident, occurs also when K = 10. However, in
this case we observe how the increase of the queuing time is
(partially) mitigated by a reduction in the balancer time (at
least when δµ ≥ 1.0). Finally, we observe that, when we use
all the neighbors, but we add weights in their selection, the
reduction in the balancer time when δµ is high (e.g. δµ = 2.0)
overweights the slightly higher queuing time.

For this reason in the following of the section we focus just
on the comparison of the case where K = 20 with respect
to the standard Sequential Forwarding algorithm. Repeating
the analyses carried out in the previous section and shown in
Fig. 3, we obtain that the optimal threshold value Θ are the
same for both considered algorithms. Hence, in the following
comparison we will refer to the same threshold value Θ that
is optimal for both alternatives.

Fig. 7 explores the benefits delay-aware algorithm K = 20
over Sequential Forwarding solution, presenting the relative
difference in the response time for every value of ρ and
δµ. In the heat map blue hues are used when the proposed
delay-aware algorithm outperforms the standard Sequential
Forwarding solution, while red hues are used when the the
delay-awareness is not increasing the response time (likely due
poor load balancing). Finally, faded colors (close to white) are
used when the two options provide similar performance. To

0.1

0.2

1.0

2.0

0.5 0.6 0.7 0.8 0.9

δ
 µ

ρ

-6

-4

-2

 0

 2

 4

 6

 8

∆
 T

R
e

s
p
 [
%

]

Fig. 7: Response time variation

evaluate the difference in response time we rely on a metric
defined as:

∆TResp =
TK=20
Resp − TSFResp

TSFResp

Where TNWResp is the response time of the Sequential For-
warding algorithm (“No Weight” version) and TK=20

Resp is the
Delay-Aware Sequential Forwarding with K=20. We observe
that, when the load is high (e.g., ρ = 0.9), even a minor
reduction in load balancing effectiveness determines a growth
in queuing time that is hard to compensate, as testified by the
red hues in the rightmost part of Fig. 7. At the same time,
when the scenario is network-bound (e.g., δµ ≥ 1.0) a more
efficient selection of the neighbor that reduces the balancer
time provides a non-negligible benefit. In Fig. 7 this is evident
in the upper part of the graph, where the reduction in response
time can be up to 6%.

IV. RELATED WORK

In this section we briefly summarize the relevant research
papers related to the issue of load balancing in distributed fog
computing systems.

In several studies in literature, the proposed solutions con-
sider a centralized component that has the role of workload
balancer with a complete knowledge of the load status of the
fog nodes of the infrastructure. For example, in [7] an algo-
rithm called Multi-tenant Load Distribution Algorithm for Fog
Environments (MtLDF) has been proposed to optimize load
balancing in Fogs environments considering specific multi-
tenancy requirements. This load balancing scheme adopts
a centralized fog management layer that receives all the
state information about the fog nodes. The solution proposed
in [8] considers tasks that are characterized according to
their computational nature and are consequently allocated to
the appropriate host. Edge networks communicate through a
brokering system with IoT systems in an asynchronous way
via the Pub/Sub messaging pattern. Also in this case a cen-
tralized workload balancer is required by the solution. A last
centralized solution, based on genetic algorithms for the design

of load-balanced solution for fog computing infrastructures, is
presented in [15]. The approach assumes a stationary load,
such that a centralized optimization algorithm can run once
during the initialization phase to map the sensors over the
fog nodes. The presence of a centralized balancer and the
required exchange of information to provide this component
with the complete knowledge about the nodes load may hinder
the performance of the fog system and cause network traffic
overload when the load changes over time. On the other
hand, the load balancing mechanism proposed in this paper
is fully distributed and does not require any load information
exchange.

The solution presented in [16] is based on a periodic
distribution of the incoming tasks among the nodes of the edge
computing network so to increase the number of tasks that
can be processed, while satisfying the quality-of-service (QoS)
requirements for the completion of the tasks. The assumption
behind this model, however, is about a different context:
indeed, the authors assume that a batch of tasks to be assigned
is always available, i.e., the tasks are not processed online as
in our solution.

An approach more similar to the sequential forwarding
algorithm is used in [9]. However, in this case the proposed
solution requires either a centralized repository to store the
load state of each fog node or a specific protocol to send
updates on the load state of each node. On the other hand,
our approach is based on a blind forwarding not requiring
the knowledge of the nodes load, and may provide good
performance without the need for a complex coordination
structures with load information exchange.

The idea of randomly selecting fog nodes to offload a task
is typically used in the class of power-of-choices algorithms,
that have been adapted in [17], [18] to work in fog computing
systems. The key difference with the algorithm proposed in
this paper is that tasks are forwarded without making any
selection based on the load of the possible alternatives and
that self-adaptation mechanisms are absent.

Finally, we need to mention the previous study where the
sequential forwarding algorithm was initially proposed [10].
This paper represents a clear step ahead with respect to the
previous one because we explore in detail the performance of
the sequential forwarding algorithm and, on the basis of the
results of this analysis, we propose the delay-aware algorithm
that is able to take advantage from the knowledge of the
infrastructure delays between fog nodes.

V. CONCLUSIONS AND FUTURE WORK

In this paper we pointed out the critical role of the fog
computing in modern IoT applications and we discussed how
load balancing is a critical feature to cope with fluctuating
workloads that are likely to occur in such widespread and
complex scenario. Furthermore, we pointed out that currently
available load balancing mechanism are typically unaware of
the heterogeneous network delay that can characterize Fog
infrastructures. Throughout this paper we address this issue
with a twofold contribution. First, we propose a comprehensive

study of how the main parameters of load and ratio between
network delay and service time affect the behavior of a delay-
blind load balancing algorithm, namely Sequential Forward-
ing. Second, we propose an improved delay-aware version of
the algorithm and we evaluate its performance.

Our study, carried out using a realistic topology based on
a prototype testbed, shows that introducing a delay-aware
mechanism has two effects. First, it reduces the contribution to
the response time related to forwarding jobs among neighbors.
Second, as the selection of the neighbor is less randomized
compared to the original sequential forwarding algorithm,
the effectiveness of the load balancing is reduced, possibly
resulting in a growth of the response time. Our experiments
show that, when the overall system load is high and the
scenario is CPU-bound, delay awareness results in a perfor-
mance degradation. On the other hand, when the scenario is
network-bound, the benefit from delay awareness overweights
the reduced effectiveness of the load balancing, providing a
reduction in response time up to 6%.

This paper is just a first step in a wider research line. We
aim to explore new cooperation mechanism and to evaluate
the impact of delay awareness on them. Furthermore, we are
currently investigating adaptive mechanisms that can automat-
ically select or disable delay awareness based on the sensing
of network delays and queuing times.

REFERENCES

[1] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys Tutorials, vol. 20, no. 3, pp. 1826–1857, 2018.

[2] M. Mahmud and R. Buyya, “Fog computing: A taxonomy, survey and
future directions,” Internet of Everything - Algorithms, Methodologies,
Technologies and Perspectives, Springer, pp. 103–130, Nov. 2018.

[3] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, Paris, France, May 2019.

[4] H. Inaltekin, M. Gorlatova, and M. Chiang, “Virtualized control over
fog: Interplay between reliability and latency,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 5030–5045, 2018.

[5] S. Chen, T. Zhang, and W. Shi, “Fog computing,” IEEE Internet
Computing, vol. 21, no. 2, pp. 4–6, 2017.

[6] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog
computing-enabled internet-of-things: A network perspective,” in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications,
2018, pp. 783–791.

[7] E. C. Pinto Neto, G. Callou, and F. Aires, “An algorithm to optimise
the load distribution of fog environments,” in 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017.

[8] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Pa-
trikakis, “A cooperative fog approach for effective workload balancing,”
IEEE Cloud Computing, vol. 4, no. 2, pp. 36–45, March 2017.

[9] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog Computing: Towards
Minimizing Delay in the Internet of Things,” in Proceedings - 2017
IEEE 1st International Conference on Edge Computing, EDGE 2017,
2017, pp. 17–24.

[10] R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti Mattia, “A random
walk based load balancing algorithm for fog computing,” in The Fifth
International Conference on Fog and Mobile Edge Computing (FMEC
2020), Jul. 2020, pp. 46–53.

[11] R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti, “Randomized load
balancing under loosely correlated state information in fog computing,”
in 23rd International ACM Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM’20), Alicante,
Spain, Nov. 2020.

[12] E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin, “A survey on
IEEE 802.11 ah: An enabling networking technology for smart cities,”
Computer Communications, vol. 58, pp. 53–69, 2015.

[13] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload
Allocation in Fog-Cloud Computing Toward Balanced Delay and Power
Consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, Dec 2016.

[14] C. Canali and R. Lancellotti, “PAFFI: Performance analysis framework
for fog infrastructures in realistic scenarios,” in 2019 4th International
Conference on Computing, Communications and Security (ICCCS), Oct
2019, pp. 1–8.

[15] C. Canali and R. Lancellotti, “A fog computing service placement

for smart cities based on genetic algorithms,” in Proc. of the 9th
International Conference on Cloud Computing and Services Science
(CLOSER 2019), Heraklion, Greece, May 2019.

[16] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach to
qos based task in edge computing networks for iot applications,” in
International Conference on Edge Computing, 2017.

[17] R. Beraldi, H. Alnuweiri, and A. Mtibaa, “A power-of-two choices based
algorithm for fog computing,” IEEE Transactions on Cloud Computing,
pp. 1–1, 2018.

[18] R. Beraldi and H. Alnuweiri, “Exploiting power-of-choices for load
balancing in fog computing,” in 2019 IEEE International Conference
on Fog Computing (ICFC), June 2019, pp. 80–86.

