Automatic Virtual Machine Clustering based on
Bhattacharyya Distance for Multi-Cloud Systems

Claudia Canali, Riccardo Lancellotti
Department of Engineering “Enzo Ferrari”
University of Modena and Reggio Emilia
{claudia.canali, riccardo.lancellotti}@unimore.it

ABSTRACT

Size and complexity of modern data centers pose scalability issues
for the resource monitoring system supporting management oper-
ations, such as server consolidation. When we pass from cloud to
multi-cloud systems, scalability issues are exacerbated by the need
to manage geographically distributed data centers and exchange
monitored data across them. While existing solutions typically
consider every Virtual Machine (VM) as a black box with indepen-
dent characteristics, we claim that scalability issues in multi-cloud
systems could be addressed by clustering together VMs that show
similar behaviors in terms of resource usage. In this paper, we pro-
pose an automated methodology to cluster VMs starting from the
usage of multiple resources, assuming no knowledge of the ser-
vices executed on them. This innovative methodology exploits the
Bhattacharyya distance to measure the similarity of the probabil-
ity distributions of VM resources usage, and automatically selects
the most relevant resources to consider for the clustering process.
The methodology is evaluated through a set of experiments with
data from a cloud provider. We show that our proposal achieves
high and stable performance in terms of automatic VM clustering.
Moreover, we estimate the reduction in the amount of data col-
lected to support system management in the considered scenario,
thus showing how the proposed methodology may reduce the mon-
itoring requirements in multi-cloud systems.

Categories and Subject Descriptors

1.5.3 [Pattern recognition]: Clustering; D.4.8 [Operating sys-
tems): Performance—Modeling and prediction; H.3.4 [Information
storage and retrieval]: System and software—Distributed systems

Keywords

Cloud Computing, Virtual Machine clustering, Bhattacharyya Dis-
tance, Spectral Clustering

1. INTRODUCTION

In the few last years, the rapid growth in demand for modern ap-
plications combined with the shift to the cloud computing paradigm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MultiCloud’13, April 22, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-2050-4/13/04 ...$15.00.

has led to the establishment of large-scale virtualized data centers.
The advent of multi-cloud further extends this vision by consid-
ering multiple data centers (possibly owned by different entities)
cooperating together. Multi-cloud data centers based on Infrastruc-
ture as a Service (IaaS) paradigm typically host several customer
applications, where each application consists of different software
components (e.g., the tiers of a multi-tier Web application). We
assume that customer applications can be replicated over multiple
cloud data centers, for example to place applications closer to the
users or to improve availability. At the level of data centers, each
physical server hosts multiple virtual machines (VMs) running dif-
ferent software components with complex and heterogeneous re-
source demand behavior.

Due to the increasing size and complexity of these infrastruc-
tures, the process of monitoring VMs resource usage to support
server consolidation in multiple data centers has become extremely
challenging. As VMs are considered as independent black boxes,
server consolidation requires information about every VM in every
data center. To cope with the scalability issues of monitoring multi-
cloud data centers, a widely used approach is to limit the data col-
lection to only a few resources (typically only CPU or memory) [5,
15, 20, 25]. However, this approach cannot fully capture the VM
behavior and may hinder the effectiveness of the subsequent con-
solidation tasks.

We claim that the scalability of monitoring in multi-cloud sys-
tems may be improved by leveraging the similarity between VM
behaviors. In this way, server consolidation considers the VMs not
as single objects, but as members of classes of VMs running the
same software component (e.g., Web server or DBMS of the same
customer application). It is worth to note that we refer to a multi-
cloud scenario characterized by long-term commitments, that is, we
focus on cloud customers that outsource their data centers to mul-
tiple cloud provider purchasing VMs for extended periods of time
(for example, integrating a private cloud with the Amazon so-called
reserved instances). This scenario is, and is expected to be, a sig-
nificant part of the cloud ecosystem also in the future [12]. Thus,
we can assume that customer VMs do not change frequently the
software component they are running (e.g., in the order of weeks or
months).

The main contribution of this paper is the proposal of an auto-
mated methodology to cluster similar VMs in an IaaS multi-cloud
system on the basis of their resource usage. Our approach is consis-
tent with the IaaS vision as it does not require any direct knowledge
of the application logic inside a software component, but it only re-
lies on the information about OS-level resource usage of each VM.
Clustering VMs into classes characterized by similar behavior al-
lows the system to reduce the monitoring for server consolidation

to a subset of VMs that are considered representative for the iden-
tified classes.

To determine the similarity among VM behavioral patterns, we
exploit the Bhattacharyya distance [6], a statistical technique mea-
suring the similarity of discrete probability distributions. Then,
a spectral clustering technique is used to group similar VMs into
classes. Our methodology takes into account multiple information
for clustering, including network and I/O related resources, while
current solutions for data center management mainly consider just
CPU or memory. A qualifying point of our methodology is the
capability to automatically select which information are most use-
ful for the clustering process, to avoid considering data that do not
carry any meaningful information and may degrade the clustering
performance due to the presence of spiky or noisy behaviors. To
the best of our knowledge, the automatic clustering of VMs with
similar behavior is a new problem, only recently analyzed in [7, 8],
where clustering was based on the correlation among resource us-
age. Our proposal outperforms the solutions in [7, 8] thanks to the
use of Bhattacharyya distance and automatic selection of resources
for VM clustering.

We apply the proposed methodology to a dataset coming from
a cloud provider hosting VMs running Web servers and DBMS.
We show that our methodology can achieve high and stable per-
formance in clustering VMs on the basis of the resource usage
monitored over different time periods; in particular, the proposed
clustering is effective even when the VM resource monitoring cov-
ers short periods of time (e.g., few days). Furthermore, we quan-
tify the reduction in the amount of data collected in our scenario
for management support, demonstrating the potential benefit for
monitoring scalability. Finally, our results prove that blindly feed-
ing every available information into the clustering process does not
necessarily increase the clustering performance, demonstrating the
advantage of automatically selecting relevant resources.

The remainder of this paper is organized as follows. Section 2
motivates our proposal and describes the reference scenario. Sec-
tion 3 presents the proposed methodology for VM clustering. Sec-
tion 4 describes the experimental testbed used to evaluate our method-
ology, while Section 5 presents the results of the experimental eval-
vation. Section 6 discusses the related work and Section 7 con-
cludes the paper with some final remarks.

2. MOTIVATION AND REFERENCE SCE-
NARIO

We recall that our reference scenario is a multi-cloud environ-
ment characterized by long-term commitment between cloud cus-
tomers and providers. In particular, we can assume that the soft-
ware components hosted on each VM do not change frequently
(they typically remain the same for weeks or months). Another as-
sumption is that the cloud providers of the data centers belonging to
the multi-cloud system have an agreement on common monitoring
and management strategies for the global infrastructure.

In such a complex scenario, resource management strategies are
needed to guarantee an efficient use of the system resources while
avoiding overload conditions on physical servers. We consider a
management strategy for multi-cloud systems which consists of
two mechanisms, as in [16]: (a) a reactive VM relocation that ex-
ploits live VM migration when overloaded servers are detected [27];
(b) a periodic global consolidation strategy that places customer
VMs on as few physical servers as possible to reduce the infras-
tructure costs and avoid resource over provisioning [3, 25].

The global consolidation is carried out periodically and aims to
produce an optimal (or nearly optimal) VM placement to reduce the

number of shared physical servers. Existing consolidation strate-
gies typically try to predict VM workload over a planning period
of time (e.g., hours or days) based on resource usage patterns ob-
served on past measurements, that are usually carried out with a
fine-grained granularity (e.g., 5-minute intervals). Since consolida-
tion strategies consider each VM as a stand-alone object with inde-
pendent resource usage patterns, the amount of information about
each VM that is collected and exchanged over a geographical net-
work is likely to arise scalability issues for the monitoring system.

The proposed methodology aims to address the monitoring scal-
ability issues by automatically clustering similar VMs. The main
goal of the methodology is to cluster together VMs of the same
customer application which are running the same software com-
ponent (e.g., VMs belonging to the same tier of a Web applica-
tion), and therefore show similar behaviors in terms of resource us-
age. For each identified classes of similar VMs, few representative
VMs are selected. Then, only the representative VMs of each class
are monitored with fine-grained granularity to collect information
for the global consolidation task, while the resource usage of the
other VMs of the same class is assumed to follow the representa-
tives behavior. It is worth to note that more than two representa-
tives (at least three) are selected for each class due to the possibil-
ity that a selected representative unexpectedly changes its behavior
with respect to its class: quorum-based techniques can be exploited
to cope with byzantine failures of representative VMs [10]. The
non representative VMs of each class are monitored with coarse-
grained granularity to identify behavioral drifts that could deter-
mine a change of class. At the same time, sudden changes lead-
ing to server overload are handled by the reactive VM relocation
mechanism. This approach allows us to reduce the amount of in-
formation that is periodically collected by the monitoring system to
support global consolidation.

Cloud data center

s N\
Host

Cloud
- Host Controller
VM resource
7| Clustering

< Engine
VM Classes and
Representatives

Cloud data center

Host Selected VM

resource usage
»| Multi-cloud
4 Controller

oo

Consolidation
. decisions

o -
. controller

Figure 1: Multi-cloud system

The reference scenario is depicted in Figure 1. The scheme rep-
resents a multi-cloud system, where each cloud data center hosts
physical servers, namely hosts, each running several VMs. A mon-
itor process on each host periodically collects samples of the VM
resources usage using the hypervisor APIs, and sends the collected
data to the cloud controller of the data center. The cloud controllers

perform several tasks. First, they aggregate VM resource usage
time series collected by the monitor processes. Second, they are
responsible for taking decisions about live VM migration within
the data center [27]. Finally, the cloud controllers communicate
(and select) VM data to two centralized components: the cluster-
ing engine, which runs the proposed methodology to automatically
cluster VMs, and the multi-cloud controller, which is responsible
for global consolidation strategies. We represent the clustering en-
gine and the multi-cloud controller as external to the cloud data
centers, but they may be placed indifferently within a data center or
in alternative external locations.

Let us now consider the dynamics occurring in the multi-cloud
system to support VM clustering and server consolidation. The pro-
cess of VM clustering starts from the collection of the time series
of VM resources usage over a certain period of time. The mon-
itor processes are responsible for this data collection. Then, the
cloud controllers of each data center send to the clustering engine
the collected VM resource time series. The clustering engine exe-
cutes the proposed methodology to cluster together VMs belonging
to the same customer application and running the same software
component. Once the clustering is complete, some representative
VMs are selected for each class. The information on VM classes
and selected representatives are sent to the cloud controllers in each
data center and to the multi-cloud controller for periodic consolida-
tion purposes. The cloud controllers in the data centers selectively
collect data about the resources of the representative VMs of each
class, then send the data to the multi-cloud controller. This lat-
ter component carries out global consolidation strategies using the
resource usage of the representative VMs to characterize the behav-
ior of every VM of the same class. The consolidation decisions are
finally communicated to the cloud controllers in each data center
to be applied. It is worth to note that the process of VM cluster-
ing is carried out periodically with a frequency that allows to cope
with changes in the VM classes (e.g. few weeks). Furthermore,
the clustering may be triggered when the number of exceptions in
VMs behavior exceeds a given threshold, where for exception we
mean newly added VMs or clustered VMs that changed their be-
havior with respect to the class they belong to. However, a precise
determination of the activation period or strategy of the clustering
process is out of the scope of this paper.

3. METHODOLOGY

In this section, we describe the methodology to automatically
cluster similar VMs in a multi-cloud system carried out by the clus-
tering engine component in Figure 1. For each multi-cloud cus-
tomer application, we aim to group in the same classes VMs which
are running the same software components (e.g., VMs belonging to
the same tier of a Web application), and consequently show similar
resource usage patterns.

The proposed methodology relies on the Bhattacharyya distance
to measure the behavior similarity between VMs. This statistical
technique allows us to determine the similarity between the discrete
probability distributions of the usage samples of the considered VM
resources. Then, we exploit a clustering technique based on spec-
tral analysis [17] to group similar VMs into classes. Specifically,
the methodology consists of the following steps:

e Extraction of a quantitative model to describe VM behavior

e Definition of a distance matrix representing the similarities
among the VMs

e Clustering based on the distance matrix to identify classes of
similar VMs

The steps of the methodology are described in detail in the rest of
this section.

3.1 VM behavior quantitative model

We now formally define the quantitative model chosen to rep-
resent the behavior of VMs, then we discuss some critical design
choices involved in this step. Given a set of N VMs, the first step
of the methodology aims at representing the behavior of each VM
n,¥n € [1, N], taking into account for each VM a set of M met-
rics, where each metric m € [1, M| represents the usage of a VM
resource.

Let (X7, X35, ..., X7%;) be aset of time series, where X7, is the
vector consisting of the samples of the resource usage represented
by the metric m of VM n. The probability density function p(X7,,)
of each time series can be considered as the description of the be-
havior of metric m on VM n. We represent the probability function
of finite-length time series through normalized histograms. Each
normalized histogram consists of a specified number of bins, where
each bin is associated to an interval of values the metric can take
and represents the sample frequency for the interval, that is the frac-
tion of samples in the time series falling within the interval.

If B,, is the number of bins considered for metric m, the his-
togram of the time series X7, is the set Hy,, = {hj,,,Vb € [1, Bin]},
where hy ,,, is the frequency associated to the b-th histogram bin
and defined as:

C HreXp x> XL (), < XD (b)Y

h”L
i X

where [{z € X7, : z > XL (b),z < XY (b)}| is the number of
samples in the range [X}, (b), XT (b)] and |X7,| is the number of
samples in the time series. The bin upper and lower bounds are
defined as: X', (b) = Xminm, + (b — 1)Az,, and XZ (b)) =
Xming, +bAx,,, where X min,, is the minimum value of metric
m for every VM, Xmax,, is the maximum value of metric m for
every VM, and Ax,, is the width of a bin for metric m, that is
Az, = m Figure 2 provides a graphical example
of the above deﬁned histogram. This definition ensures that for
each metric m the number of bins is the same for every VM: this
is important for the following step of the methodology because we
need to compare same-sized histograms of different VMs.

Probability density

As n
% |

v

A

x" (b)Y b-th bucket X (b)
m m

Bm-tthcket

Figure 2: Histogram example

The extraction of the quantitative description of the VM behavior
involves some critical design choices which may affect the final
outcome of the clustering process. Specifically, we need to address
the two following issues:

e Selecting which information is useful to capture the VMs be-
havior

e Determining the number of the bins used in the normalized
histograms

Automatic selection of the metrics is a first critical task that may
affect the VM clustering process. A naive approach of just feeding
into the clustering process as much information as possible may
be counter-productive, because non-significant data may have an
effect comparable to noise and adversely affect the performance of
clustering. Furthermore, any human intervention in the information
selection process should be avoided because it would hinder the ap-
plicability of the methodology to large-scale data centers. Hence,
we need to define an automatic process to select relevant metrics.
In the management of data centers, CPU and memory are typically
considered as representative VM metrics [3, 26], but we claim that
they are not sufficient for VM clustering. For metric selection, we
rely on two statistical properties of metric time series: the autocor-
relation function (ACF) and the coefficient of variation (CV). We
perform a first selection based on the values of the ACF of each
time series: a quick decrease of the ACF means that the observed
metric exhibits low (or null) autocorrelation. This is the case of
metrics characterized by random perturbations and/or spikes vary-
ing in time and intensity which may be detrimental for VM clus-
tering purposes [4]. Hence, we choose to retain metrics showing a
slow decrease of the ACF, which have a strong dependency among
its values. However, a slow decreasing of ACF may be caused by
two conditions: (a) the metric is characterized by trends or peri-
odical patterns that are likely to be relevant to describe the VM
behavior; (b) the metric values show very low variations during
the observation period, thus resulting not relevant for capturing dif-
ferences in VM behaviors. To eliminate metrics corresponding to
the latter condition, we consider the CV of the metric time series.
Specifically, a very low CV (K 1) indicates metrics whose values
vary into very small ranges, and which are likely to provide a not
meaningful informative contribution for VM clustering.

The second critical issue involved in this step of the methodology
is determining the number of histogram bins. The choice is difficult
due to the heterogeneity of the metrics considered in monitoring.
A number of statistical techniques are popularly used to automat-
ically estimate the number of bins of an histogram, such as Scott
and Sturges rules [24]. However, these techniques are optimized
for normally distributed data, while we can not assume a normal
distribution of samples for metrics describing VM resource usage
in cloud data centers. Hence, our choice falls on the Freedman-
Diaconis [14] rule, which is a popular technique to determine the
number of histogram bins making use of the inter-quartile range of
the data to cope with samples without the assumption of a normal
distribution.

3.2 Distance matrix

The second step of the methodology consists in building a dis-
tance matrix to define similarities among VMs starting from the
histogram-based representation of the VM behavior. To build the
distance matrix we exploit the Bhattacharyya distance [6], which
measures the similarity between two datasets based on their proba-
bility distributions. The Bhattacharyya distance Dy, (n1,n2) com-
puted according to metric m between VMs n; and ns is defined
as:

Dy, (n1,n2) = *ln(z hl:l,lm ’ h:,gm)

b=1

where h;! is the b-th bin value in the histogram H;,} of metric m

for VM n1, while hy? refers to VM ns. Since the histograms are
normalized, the Bhaitacharyya distance may take values ranging
from O (identical histograms) to co (histograms where the product
of every pair of bins is 0), as shown in Figure 3. However, for clus-

tering purposes a single metric is not sufficient, so we need to com-

D,(n1,n2)=-In(0.25+0.5+0.25)

0.25) 0.25 =-In(1) 0.25) 0.25
x 0 0 o0 x

poxd T1 ot oo sy

D,(n1,n2)=-In(0)

.25 Jo.2s Vo o2 Jozs

mlln :

Figure 3: Bhattacharyya distance example

bine together more metrics. To this aim, we define the multimetric-
based distance as the sum of squares of the distances for each met-
ric, that is:

M
D(nhnZ) = Z Dm(nl7n2)2am
m=1

where D,,, (m, ng) is Bhattacharyya distance between VMs n; and
ne according to metrics m; the boolean variable a,, have value 1
or 0 depending on whether metric m is considered or not.

Finally, we build the distance matrix D using the distances be-
tween every pair of VMs. Due to the nature of the Bhattacharyya
distance, the distance matrix D is positive, symmetric and elements
on the main diagonal have value 0.

3.3 Clustering

The final step of the methodology aims to obtain a clustering so-
lution from the distance matrix D. To this aim, we must transform
D into a similarity matrix S. This step is carried out by applying
a Gaussian kernel operator, that is a common approach to translate
distance into similarity [11]: specifically, we define the similarity

—d? .
as S;; = e%, where d; ; is an element of the distance matrix D
and o is a blurring coefficient of the kernel function. Preliminary
analyses on the impact of the o coefficient on the clustering results
suggest that the choice of the parameter is not critical for the per-
formance of the clustering algorithm. We choose o = 0.6 that is a
default value for Guassian kernels in statistical software [18].

To cluster together elements of a set starting from a similarity
matrix, traditional algorithms such as k-means or kernel k-means
are not viable options because they expect as input a set of coordi-
nates for each element to cluster. On the other hand, spectral clus-
tering is a widely adopted solution which is explicitly designed to
manage as input a similarity matrix or matrix-based representation
of graphs [17].

The spectral clustering algorithm computes the Laplacian opera-
tor from the input similarity matrix S. The eigenvalues and eigen-
vectors of the Laplacian are then used to extract a new coordinate
system that is fed into a k-means clustering phase [21]. About
this last phase of the clustering process, we must recall that the
k-means algorithm starts with a random set of centroids. To en-
sure that the k-means result is not affected by local minimums, we
iterate the k-means multiple times, then we compare the ratio be-
tween inter-cluster distances (sum of squares of distances between
elements belonging to different clusters) and intra-cluster distances
(sum of squares of distances between elements of the same clus-
ter). Finally, we select the best solution across multiple k-means
runs as the solution that maximize inter-cluster distances and mini-
mize intra-cluster distances. The output of the clustering is a vector
C, where the n-th element ¢" is the ID of the cluster to which VM
n is assigned. Once the clustering is complete, we need to select
for each class some representative VMs that will be monitored with
fine-grained granularity. To this purpose, it is worth to note that the
output of the k-means internal phase of spectral clustering provides

as additional output the coordinates of the centroids for each iden-
tified class. In this case, the representative VMs can be selected as
the VMs closest to the centroids.

4. EXPERIMENTAL TESTBED

To evaluate the performance of the proposed methodology, we
consider a dataset coming from a real cloud data center hosting
customer applications. Specifically, we consider 110 VMs belong-
ing to one customer Web application which is hosted on the cloud
data center and is deployed according to a multi-tier architecture.
Specifically, the 110 VMs are divided in two classes: Web servers
and back-end servers (that are DBMS). We collect detailed data
about the resource usage of every VM for different periods of time,
ranging from 5 to 180 days. The samples are collected with a fre-
quency of 5 minutes. For each VM we consider 10 metrics describ-
ing the usage of different resources related to CPU, memory, disk,
and network. The complete list of the metrics is provided in Table 1
along with a short description.

Table 1: Virtual machine metrics

Metric Description

X1 SysCallRate Rate of system calls [req/sec]

Xo | CPU CPU utilization [%]

X3 DiskAvl Available disk space [%]

X4 CacheMiss Cache miss [%]

X5 | Memory Physical memory utilization [%]

Xe | PgOutRate Rate of memory pages swap-out
[pages/sec]

X7 | InPktRate Rate of network incoming packets
[pkts/sec]

Xg | OutPktRate Rate of network outgoing packets
[pkts/sec]

Xo AliveProc
X10 | ActiveProc

Number of alive processes
Number of active processes

As a first step of the methodology, we select a reduced subset of
metrics based on the statistical properties of the metric time series.
We first consider the autocorrelation function (ACF) computed for
different values of the time-lag, and we evaluate how fast the ACF
decreases as the time-lag increases: we discard metrics having a
percentage decrease of ACF greater than 50% for time-lag equal
to 1 [4]. Among the remaining metrics, we operate a further se-
lection based on the coefficient of variation (CV): specifically, we
discard metrics having a value of CV < 1, as discussed in Sec-
tion 3. Then, we compute for each selected metric m of each VM
n the normalized histogram H;,, that is built on the time series
of metric m. We compute the metric histograms according to the
Freedman-Diaconis [14] rule (default) and to the Scott rule [24],
which will be used as a term of comparison. In the second step of
the methodology, the histograms of the selected metrics are used to
compute the distance of Bhattacharyya between pairs of VMs, as
described in Section 5.1. Then, the distance matrix D is computed
starting from the Bhattacharyya distances, and D is given as input
to the third and last step of the methodology. The last step applies
the spectral clustering to the distance matrix D. Since the internal
clustering phase of k-means starts each run with a set of randomly-
generated cluster centroids, we run the final clustering 102 times,
then we select the best solution C.

To evaluate the performance of the proposed clustering method-
ology, we need a measure indicating how many VMs are correctly
identified as Web servers and DBMS. To this aim, we consider the
clustering purity, which is one of the most popular measures for
clustering evaluation [1] and represents the fraction of correctly
identified VMs. Purity is determined by comparing the output C

of the clustering algorithm with the ground truth vector C*, which
represents the correct classification of VMs into two clusters con-
sisting of Web servers and DBMS servers. Purity is defined as:

[{c": " =c"",¥n € [1,N]}|
N

where [{c" : ¢" = ¢"™,Vn € [1,N]}| is the number of VMs
correctly clustered and [V is the total number of VMs.

To understand the benefits for the monitoring system achievable
through the proposed methodology, it is interesting to determine
the potential reduction in the amount of data collected to support
consolidation in the described scenario. Assuming that the global
consolidation strategy considers K metrics for each VM that are
collected with a frequency of 1 sample every 5 minutes, we have to
manage a volume of data 288 - K samples per day per VM. Con-
sidering our scenario with 110 VMs, the total amount of data is in
the order of 3.2 x 10* - K samples per day. After the clustering, we
need to continue monitoring every 5 minutes only a few represen-
tative VMSs per class, while the remaining VMs can be monitored
with a coarse-grained granularity, for example of 1 sample every
few hours. Assuming to select 3 representatives for each of the 2
VM classes, the amount of data to collect after clustering is reduced
to 17.2 x 102 - K samples per day for the class representatives; for
the remaining 104 VMs, assuming to collect one sample of the
metrics every 6 hours for VM, the data collected is in the order of
4.2 x 10%- K samples per day. Hence, we observe that our proposal
may reduce the amount of data collected by nearly a factor of 15,

from 3.2 x 10* - K t021.4 x 10 - K.

purity =

5. PERFORMANCE EVALUATION

We now evaluate the performance of the proposed methodology
by applying it to the described testbed. In particular, the exper-
imental evaluation aims to investigate the critical design choices
involved in the first step of the methodology, which concerns the
extraction of the quantitative model to describe the VM behavior.
In the rest of this section, we present two experiments, each inves-
tigating the impact on clustering performance of a specific aspect
of the methodology first step, as described in Section 3: (a) the
automated selection of the metrics to exclude useless or noisy in-
formation; (b) the choice of the statistical rule for determining the
number of the bins of the metric histograms. All experiments eval-
uate the purity of the VM clustering for different lengths of metric
time series, ranging from 5 to 180 days.

5.1 Impact of metric selection

In this first experiment, we aim to evaluate the impact on cluster-
ing performance of the automated selection of relevant VM metrics.
The automated selection is based on the values of the Autocorrela-
tion Function (ACF) and of the variation coefficient (CV) of each
metric, that are reported in Table 2. In particular, third and fourth
columns of the table report the percentage decrease of the values
of ACF computed with time-lag equal to 1 and 5, respectively. We
evidence with colored background the rows corresponding to dis-
carded metrics, emphasizing with bold font the ACF and CV values
that determine the elimination from the set of relevant metrics.

We first discard metrics X4 and X because they show a quick
decrease of ACF even for short time-lag (68% and 85% for time-
lag equal to 1, respectively), meaning that the metrics are likely to
be characterized by random perturbations and/or spikes varying in
time and intensity [4]. Then, we pass to consider the CV of metric
time series. It is worth to note that metric X¢g has a CV value > 1,
thus confirming that it is characterized by spiky and noisy behav-
ior [9]. On the other hand, metric X4 is characterized by random

Table 2: Statistical properties of VM metrics

Metric ACF decrease CvV
Lag=1 | Lag=5
X1 SysCallRate 11% 20% 0.87
X2 | CPU 14% 23% 1.09
X3 | DiskAvl 1% 3% 0.17
X4 | CacheMiss 68 % 81% 0.60
X5 | Memory 5% 9% 0.54
X6 | PgOutRate 85% 93% | 23.13
X7 | InPktRate 12% 19% 1.29
Xs | OutPktRate 13% 21% 1.22
X9 | AliveProc 1% 3% 0.07
X0 | ActiveProc 17% 22% 0.67

perturbations that determines its lower variance (CV < 1). As re-
gards the remaining metrics, we discard X3 and Xg because they
have a CV « 1, indicating that these metrics show very low varia-
tions during the observation period, thus providing a not meaning-
ful informative contribution to differentiate the behavior of VMs
belonging to separated classes.

To demonstrate that the selected metrics bring a relevant contri-
bution to VM description, we evaluate the clustering results achiev-
able by computing the Bhattacharyya distance based just on single
metrics; specifically, we consider two discarded metrics, X¢ and
Xo, and the selected metric Xg. Figure 4 compares the clustering
purity achieved for the three considered metrics. From Figure 4 we
observe that both metrics X¢ and Xg lead to poor clustering per-
formance, with a purity that is always below 0.75 and 0.7, respec-
tively. On the other hand, the best results are obtained using the
metric Xg, that achieves a purity higher than 0.75 for every time
series length. This result confirms our claim that metrics charac-
terized by spiky behavior or by too low variance do not effectively
contribute in capturing the VM behavior.

Xg (CV=~1) —o—
'l Xg (CV (1) —-bees]
Xg(CV) 1) -t

2
=
S
o 3
0.7 & b
A A a A
0.6 [’) a 1
« A
B A A AT
SN P
0.5 : : ‘ : ‘ : ‘ *

180 120 60 40 30 20 15 10 5
Time series length [days]

Figure 4: Clustering purity for single metrics

We now consider the set of most relevant metrics determined
by the automated selection based on ACF and CV values, namely
Best Set: SysCallRate (X1), CPU (X32), memory (X5), InPktRate
(X7), OutPktRate (X3) and ActiveProc (X;0). Figure 5 shows the
clustering purity as a function of time series length for different
metric combinations: the entire set of 10 metrics, namely All Met,
the Best Set and the selected metric X for comparison term.

We first observe that the use of the Best Set leads to two impor-
tant achievements with respect to the entire set of metrics: better

All Met —m—
1 W E--eeeeee = Best Set -t 4
Xg -0
09 |
> 08¢
5
o
0.7 | f
0.6 | i
0.5 ‘ ‘ : s ‘ ‘ ‘

180 120 60 40 30 20 15 10 5
Time series length [days]

Figure 5: Clustering purity considering different metrics

performance and stability of the clustering results for different time
series length. Discarding the metrics based on their ACF and CV
values allows us to avoid the negative effect that adds variability to
the performance of the All Met curve. Such negative impact is ev-
ident if we compare the curves referred to metric Xg and All Met:
for some time series length (e.g., 40 and 30 days) the single metric
achieves better results than the All Met curve, whose performance
is decreased by the negative effect of metrics which are discarded in
the Best Set. It is also worth to note that the clustering purity for A/l
Met is particularly variable for long time series (left part of the fig-
ure). This result is apparently counter-intuitive, because it should
be easier for the clustering process to correctly associate VMs to
the belonging class when longer sequences of characterizing mea-
surements are available. However, the reason of this behavior can
be found in the presence of multiple local maxima (modes) in the
distributions of long metric time series. The multi-modal nature
of these distributions, that was evidenced by preliminary statistical
analysis carried out on metric time series, tends to hinder the per-
formance of the clustering process. However, an appropriate selec-
tion of metrics significantly reduces the sensibility of the clustering
results to the length of the time series.

Table 3: Clustering purity of Best Set vs. single metrics

Time Series Single Metric Best
length [d] X1 X2 X5 X7 Xs X10 Set
180 0.70 [1.00 | 0.95 | 0.75 | 0.95 | 1.00 | 1.00
120 0.82 1090 | 1.00 | 1.00 | 0.75 | 0.8T | 1.00

60 0.82 | 1.00 | 1.00 | 0.94 | 0.93 | 0.93 | 1.00

40 0.80 [0.75 1090 [0.90 | 0.85 [0.90 | 0.95

30 0.76 | 0.80 | 0.85 | 0.68 | 0.88 | 0.88 | 0.94

20 0.76 | 0.81 [0.79 | 0.87 | 0.88 | 0.83 | 0.90

15 0.79 [0.82 [0.74 1 0.85 | 0.85 | 0.77 | 0.87

10 078 1 0.81 [0.71 [0.83 | 0.84 | 0.71 | 0.85

5 0.78 10.82 [0.68 [0.80 | 0.83 | 0.70 | 0.84

Another interesting observation is that the clustering purity of
the Best Set outperforms the results of each single metric selected
as relevant, as clearly shown in Table 3, where the highest value
of purity for every time series length is emphasized in bold font.
Furthermore, it is worth to note that the purity of the Best Set out-
performs (by up to 14%) the results of the clustering approach pre-
sented in our previous studies [7, 8], where clustering was based
on correlation among VM metrics: for example, for 20-days time

series the Best Set achieves a purity higher than 0.9, against a value
close to 0.8 of the correlation-based approach.

A final observation comes from the comparison between the re-
sults of the Best Set and those reported in second and third columns
of Table 3, representing X2 (CPU) and X5 (Memory), respectively:
the use of single resources like CPU and memory, that typically are
the only metrics considered in cloud data center management, is
not sufficient to capture the VMs behavior for clustering purposes.
Hence, this experiment confirms the need to consider multiple re-
sources to correctly characterize VM behavior, but also demon-
strates the importance of selecting the information to avoid adding
useless data which may significantly decrease the clustering perfor-
mance.

5.2 Impact of histogram characteristics

To support the choice of the Freedman-Diaconis (FD) rule [14]
to determine the number of histogram bins, we now evaluate the use
of another statistical rule, namely Scott [24]. The Scott rule tends to
minimize the integrated mean squared error of the density estimate,
so it is widely used for random samples of normally distributed
data. Figure 6 shows the values of the clustering purity as a function
of time series length for histograms generated through FD and Scott
rules. In this experiment we use the selected metrics belonging
to the Best Set defined in the previous experiment to compute the
Bhattacharyya distance.

" Best Set (FD) mmmmm
1 Best Set (Scott) === -

0.9]

0.8 R

Purity

0.7

0.6

0.5
180 120 60 40 30 20 15 10 5

Time series length [days]

Figure 6: Purity for different time series length and histogram
number of bins

As shown in Figure 6, the use of the FD rule allows us to achieve
for every time series length a clustering purity that is significantly
higher with respect to the case of the Scott rule, with a difference
in the achieved purity up to 0.17. We should consider that the Scott
rule produces histograms with a much lower number of bins with
respect to the FD rule (1 or 2 orders of magnitude, depending on the
metric). This explains the worse results of the Scott case, because
few and coarse bins are not accurate enough to describe metric dis-
tributions and, consequently, VMs behavior.

6. RELATED WORK

Multi-cloud systems have been proposed in the last few years
to address the shortcomings of traditional cloud infrastructures by
providing large cloud services for customers. Research in this field
ranges from the proposal of multi-cloud frameworks and federa-
tions of cloud providers [23] up to proposals of development mod-
els [2], and solutions for monitoring and management of cloud re-
sources.

The Reservoir project [23] is one of the most significant efforts in
the field of frameworks for multi-cloud. The proposed architecture
aims to support federation of cloud providers offering a uniform
interface explicitly designed to support the deployment of business
services. Other frameworks have been proposes and analyzed in
the scope of multi-cloud. For example, several frameworks such as
Eucalyptus !, Open Nebula 2, Nimbus * support different virtual-
ization technologies, that represent a key feature for a multi-cloud
environment.

As regards the issue of monitoring large data centers, current
solutions typically exploit frameworks for periodic collection of
system status indicators. Most frameworks for multi-cloud mon-
itoring rely on standard building blocks such as Ganglia*, Cacti
or Munin °. However, monitoring a large number of VMs in a
geographically distributed environment remains a challenge unless
some technique is used to reduce of the amount of data to collect
and store. Our proposal explicitly aims to address this problem.

Similar scalability issues can be observed for multi-cloud man-
agement. Most management solutions are inherited from tradi-
tional cloud literature, and can be divided in two categories: re-
active on-demand solutions that can be used to avoid and miti-
gate server overload conditions, and periodic solutions that aim
to consolidate VMs exploiting optimization algorithms. The two
approaches can be combined together [16]. Examples of reac-
tive solutions are [5] and [15], that propose a mechanism based
on adaptive thresholds regarding CPU utilization values. A sim-
ilar approach is described also in Wood et al. [27] with a rule-
based approach for live VM migration that defines threshold levels
about the usage of few specific physical server resources, such as
CPU-demand, memory allocation, and network bandwidth usage.
We believe that this type of solution can be integrated in our pro-
posal at the level of cloud controllers. An example of periodic VM
consolidation solutions is proposed by Kusic ef al. in [19], where
VM consolidation is achieved through a sequential optimization ap-
proach. Similar solutions are proposed in [3, 26]. However, these
approaches are likely to suffer from scalability issues in large scale
distributed systems due to the amount of information needed by the
optimization problem. The scalability issue is exacerbated in the
context of multi-cloud infrastructures due to the geographic scale.
Solutions like our proposal, aiming to reduce the amount of data to
collect and consider for the management of cloud data centers, may
play a major role for the applicability of consolidation strategies to
multi-cloud systems.

In preliminary studies [7, 8], we exploit the correlation between
resource usage to cluster VMs depending on their behavior. How-
ever, the methodology presented in [7, 8] suffers from some draw-
backs: the clustering performance decreases rapidly for short met-
ric time series as well as in presence of time periods, even short,
during which VMs are idle. On the other hand, the approach pro-
posed in this paper overcomes these issues thanks to the use of
spectral clustering technique [13, 22] and Bhattacharyya distance [6]
to determine the similarity between VMs. Zhang et al. [28] pro-
pose a method for VM clustering in cloud systems; however, they
only consider storage resources in order to perform storage consol-
idation strategies. On the other hand, our proposal focuses on the

"http://www.eucalyptus.com
Zhttp://www.opennebula.org
3http://www.nimbusproject.org/
“http://ganglia.sourceforge.net/
Shttp://www.cacti.net
Shttp://munin-monitori /
p://munin-monitoring.org

more general problem of global server consolidation and takes into
account multiple resources to describe VMs behavior.

7. CONCLUSIONS AND FUTURE WORK

We proposed a methodology for automatically clustering VMs
into classes sharing similar behavior to improve the scalability of
monitoring process supporting management operations in multi-
cloud cloud data centers. The methodology exploits the Bhattacharyya
distance to determine similarities among different VMs starting
from their resource usage. The methodology considers multiple
VM metrics and automatically selects which of them actually bring
useful information for VMs clustering. The application of the pro-
posed methodology to the data center of a cloud provider shows that
the accuracy of VMs clustering ranges between 100% and 84% for
every considered scenario and can reduce the amount of data col-
lected by a factor of 15.

As a future work we plan to validate our methodology with mul-
tiple complex scenarios where the data centers host several differ-
ent applications. Furthermore, we aim to evaluate if the VM clus-
tering can be exploited to improve the scalability not only of the
monitoring but also of the server consolidation process.

8. REFERENCES

[1] E. Amigd, J. Gonzalo, J. Artiles, and F. Verdejo. A
Comparison of Extrinsic Clustering Evaluation Metrics
Based on Formal Constraints. Journal of Information
Retrieval, 12(4):461-486, Aug. 20009.

[2] D. Ardagna, E. di Nitto, P. Mohagheghi, et al. MODAClouds:
A model-driven approach for the design and execution of
applications on multiple clouds. In Proc. of Workshop on
Modeling in Software Engineering (MISE), June 2012.

[3] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang.
Energy-Aware Autonomic Resource Allocation in Multitier
Virtualized Environments. I[EEE Trans. on Services
Computing, 5(1):2 -19, Jan. 2012.

[4] Y. Baryshnikov, E. Coffman, G. Pierre, D. Rubenstein,

M. Squillante, and T. Yimwadsana. Predictability of
Web-Server Traffic Congestion. In Proc. of IEEE Workshop
on Web Content Caching and Distribution (WCW), Sophia
Antipolis, France, Sept. 2005.

[5] A. Beloglazov and R. Buyya. Adaptive Threshold-Based
Approach for Energy-Efficient Consolidation of Virtual
Machines in Cloud Data Centers. In Proc. of MGC
Workshop, Bangalore, India, Dec. 2010.

[6] A.Bhattacharyya. On a measure of divergence between two
statistical populations defined by their probability
distributions. Bulletin of the Calcutta Mathematical Society,
35:99-109, 1943.

[7] C. Canali and R. Lancellotti. Automated Clustering of
Virtual Machines based on Correlation of Resource Usage.
Communications Software and Systems, 8(4), Dec. 2012.

[8] C. Canali and R. Lancellotti. Automated Clustering of VMs
for Scalable Cloud Monitoring and Management. In Proc. of
Conference on Software, Telecommunications and Computer
Networks (SOFTCOM), Split, Croatia, Sept. 2012.

[9] S. Casolari, S. Tosi, and F. Lo Presti. An adaptive model for
online detection of state changes in Internet-based systems.
Performance Evaluation, 69(5):206-226, May 2012.

[10] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. In M. I. Seltzer and P. J. Leach, editors, OSDI,
pages 173—-186. USENIX Association, 1999.

[11] L S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means:
spectral clustering and normalized cuts. In Proc. of
International Conference on Knowledge Discovery and Data
Mining, Seattle, USA, Aug. 2004.

[12] D. Durkee. Why cloud computing will never be free. Queue,
8(4):20:20-20:29, Apr. 2010.

[13] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A
survey of kernel and spectral methods for clustering. Pattern
Recognition, 41(1):176 — 190, Jan. 2008.

[14] D. Freedman and P. Diaconis. On the histogram as a density
estimator:L.2 theory. Probability Theory and Related Fields,
57(4):453-476, Dec. 1981.

[15] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Resource pool management: Reactive versus proactive or
let’s be friends. Computer Networks, 53(17), Dec. 2009.

[16] Z. Gong and X. Gu. PAC: Pattern-driven Application
Consolidation for Efficient Cloud Computing. In Proc. of
Symposium on Modeling, Analysis, Simulation of Computer
and Telecommunication Systems, Miami Beach, Aug. 2010.

[17] A. K. Jain. Data clustering: 50 years beyond K-means.
Pattern Recognition Letters, 31(8):651 — 666, 2010.

[18] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis.
kernlab - An S4 package for kernel methods in R. Technical
Report 9, WU Vienna University of Economics and
Business, Aug 2004.

[19] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang. Power and Performance Management of
Virtualized Computing Environment via Lookahead. Cluster
Computing, 12(1):1-15, Mar. 2009.

[20] R. Lancellotti, M. Andreolini, C. Canali, and M. Colajanni.
Dynamic Request Management Algorithms for Web-Based
Services in Cloud Computing. In Proc. of IEEE Computer
Software and Applications Conference (COMPSAC),
Munich, Germany, Jul. 2011.

[21] U. Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395-416, Dec. 2007.

[22] A. Y. Ng, M. I Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In Advances in Neural
Information Processing Systems, pages 849-856, 2001.

[23] B. Rochwerger, D. Breitgand, E. Levy, et al. The reservoir
model and architecture for open federated cloud computing.
IBM Journal of Research and Development, 53(4):4:1-4:11,
July 2009.

[24] D. W. Scott. On Optimal and Data-Based Histograms.
Biometrika, 66(3):605-610, 1979.

[25] T. Setzer and A. Stage. Decision support for virtual machine
reassignments in enterprise data centers. In Proc. of Network
Operations and Management Symposium (NOMS’10),
Osaka, Japan, Apr. 2010.

[26] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
scalable application placement controller for enterprise data
centers. In Proc. of 16th World Wide Web Conference
(WWW’07), Banff, Canada, May 2007.

[27] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and gray-box strategies for virtual machine
migration. In Proc. of Conference on Networked systems
design and implementation (NSDI), Cambridge, Apr. 2007.

[28] R. Zhang, R. Routray, D. M. Eyers, et al. IO Tetris: Deep
storage consolidation for the cloud via fine-grained workload
analysis. In IEEE Int’l Conference on Cloud Computing,
Washington, DC USA, July 2011.

