
Randomized Load Balancing under Loosely Correlated State
Information in Fog Computing

Roberto Beraldi1, Claudia Canali2, Riccardo Lancellotti2, Gabriele Proietti Mattia1
1 Sapienza University of Rome, Italy 2 University of Modena and Reggio Emilia, Italy

1 {beraldi, proiettimattia}@diag.uniroma1.it 2{claudia.canali, riccardo.lancellotti}@unimore.it

ABSTRACT
Fog computing infrastructures must support increasingly complex
applications where a large number of sensors send data to interme-
diate fog nodes for processing. As the load in such applications (as
in the case of a smart cities scenario) is subject to significant fluctu-
ations both over time and space, load balancing is a fundamental
task. In this paper we study a fully distributed algorithm for load
balancing based on random probing of the neighbors’ status. A qual-
ifying point of our study is considering the impact of delay during
the probe phase and analyzing the impact of stale load information.
We propose a theoretical model for the loss of correlation between
actual load on a node and stale information arriving to the neigh-
bors. Furthermore, we analyze through simulation the performance
of the proposed algorithm considering a wide set of parameters
and comparing it with an approach from the literature based on
random walks. Our analysis points out under which conditions the
proposed algorithm can outperform the alternatives.

KEYWORDS
Fog Computing; Load Balancing; Probe-based Algorithm
ACM Reference Format:
Roberto Beraldi1, Claudia Canali2, Riccardo Lancellotti2, Gabriele Proi-
etti Mattia1. 2020. Randomized Load Balancing under Loosely Correlated
State Information in Fog Computing. In 23rd International ACM Confer-
ence on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM ’20), November 16–20, 2020, Alicante, Spain. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3416010.3423244

1 INTRODUCTION
Fog computing is becoming a de-facto standard for the support
of large distributed applications, such as smart cities applications,
where data from a plethora of sensors is pre-processed, filtered and
aggregated by intermediate fog nodes and is then sent to a cloud
data center for additional analysis and storage. However, for the
success of the fog computing vision, resource allocation is a key
challenge due to finite resources at the fog level, increasing number
and complexity of applications, and heterogeneity of incoming load
due to mobile traffic [3]. In particular, achieving an adequate load
balancing by distributing requests over the computing resources

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSWiM ’20, November 16–20, 2020, Alicante, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8117-8/20/11. . . $15.00
https://doi.org/10.1145/3416010.3423244

of the distributed fog infrastructure is a critical task for the sup-
port of the deployed applications. A fully centralized approach
can achieve competitive performance [8], but has the weakness
of high computational complexity and huge reporting overhead.
Therefore, a centralized approach is not suitable for distributed fog
computing systems: this consideration motivates our research on
algorithms and protocols for a fully distributed approach to load
sharing, without centralized components that act as data storage
or orchestrator. Although resource sharing is a well-studied topic
in the computer science community, some peculiar elements of fog
computing do not fit the assumptions of studies in literature, such
as: (1) the absence of a centralized entity that acts as a load bal-
ancer; (2) the heterogeneity among resource availability and local
scheduling policies; (3) delayed state information among nodes.

The main contribution of this paper is a study of the impact of
network latency on the effectiveness of randomization, which is
the base of an important class of load balancing protocols, used to
allocate on fog nodes jobs that are continuously generated from
end devices (on-line load balancing). As a part of this analysis, we
consider a power-of-random choices algorithm, namely probe-based
where a fog node asks its neighbors’ information on their load be-
fore taking forwarding decisions. This job offloading is regulated
by a threshold Θ while workload information reflects the state of
the probed node 𝜏 time units before the decision. We show that
if 𝜏 is comparable with the service time, the load balancing per-
formances deviate remarkably from the power-of-random choice’s
one and are similar to blind forwarding decisions. Furthermore,
the probe-based algorithm is analyzed by means of simulation and
compared with an existing alternative approach based on random
walks, namely sequential forwarding. Our experiments highlight
how the query fan-out (𝐹𝑂) parameter may play a complex role in
the algorithm performance, including the possibility that a herd-
ing effect [4] may occur with a consequent deterioration of the
performance. We also show that the probe-based algorithm may
outperform the sequential forwarding alternative especially in a
geographic scenario characterized by higher heterogeneity in terms
of incoming load. Another important result concerns the impact
on the performance of the 𝐹𝑂 parameter and of the herding effect,
which is much less evident in a geographic heterogeneous scenario,
thus identifying the proposed solution as the preferable choice for
a realistic deployment scenario.

The rest of this paper is organized as following. Section 2 de-
scribes the proposed probe-based algorithms and the sequential
forwarding algorithm. Section 3 presents a mathematical model of
the system performance and Sec. 4 the evaluation of the proposed
algorithm based on the Omnet++ simulation framework. Finally,
Sec. 5 presents some final remarks.

https://doi.org/10.1145/3416010.3423244
https://doi.org/10.1145/3416010.3423244

MSWiM ’20, November 16–20, 2020, Alicante, Spain R. Beraldi, C. Canali, R. Lancellotti, G. Proietti Mattia

2 ALGORITHM DEFINITION
We now introduce the probe-based load balancing algorithm that re-
lies on a threshold to determine whether, upon receiving a new job,
a probe for a less loaded neighbour is to be started. The threshold
Θ is applied to the system load, that represents the number of jobs
queued in the fog node (or being executed). This metric is used as
an estimation of the waiting time for the incoming job. If a probe
is to be started, the fog node issues query messages to a randomly
selected set of 𝐹𝑂 neighbours. The parameter 𝐹𝑂 is the fan-out of
the probe and ranges from 𝐹𝑂 = 1, meaning that only one random
neighbour is selected, to 𝑁 − 1 (𝑁 being the number of considered
fog nodes), meaning that the probing involves every node in the
infrastructure.

Algorithm 1 Probe-based Algorithm
Require: Θ, 𝐹𝑂 , Job

if Job.IsForwarded() or System.Load() ≤ Θ then
ProcessLocally(Job)

else
Neighs[]← Random(System.neighbours(), 𝐹𝑂)
Responses[]← ProbeNeighbours(Neighs[])
BestNeigh← SelectWithLowestLoad(Responses[])
if System.Load() > BestNeigh.Load() then

Forward(Job, BestNeigh)
else

ProcessOrDrop(Job, System.MaxQueue())
end if

end if

Algorithm 1 presents the formalization of the proposed algo-
rithm. When a job from a sensor is received, the fog node uses the
threshold Θ and the local load to decide if a probe for the neigh-
bours’ load should be issued (jobs forwarded from other fog nodes
are processed locally without additional evaluation). If the probing
is required, the fog node issues a set of query messages to the neigh-
bours and waits for the response of every neighbour (this means
that the higher is 𝐹𝑂 , the longer the probing phase takes). Each
neighbour responds providing its load status, so the fog node can de-
cide if the job should be forwarded to the neighbour with the lowest
load or if the job is to be processed locally (if every neighbour has
a higher load). It is worth to note that, in the case of high network
delay (due slow network or due to network congestion), the load
returned by a neighbour may be a stale information far different
from the load the forwarded job will encounter. This may result in
inaccurate forwarding decisions and can cause the so-called herding
effect, known in literature [4]. A more detailed discussion on the
effect of stale load information is provided in Sec. 3. When local
processing occurs, the procedure ProcessOrDrop() is called: is there
is space in the local queue, the job is enqueued for processing. If
the queue is full, the job is dropped.

3 A MODEL FOR STALE INFORMATION
We consider 𝑁 → ∞ number of nodes, with capacity queue 𝐾
receiving each a Poisson flow of job requests with rate _ and service
time 1` = 1. The model assumes that the dynamic of these nodes is
independent of each other and that the state information is available

after a time interval 𝜏 . Let 𝑋 (𝑡) be the queue length of a generic
node in the system. From the Chapman-Kolmogorov, [5] equations,
the probability transition functions of 𝑋 (𝑡) can be expressed in a
matrix form as:

P(𝑡) = 𝑒Q𝑡

where:
𝑃𝑖 𝑗 (𝑡) = 𝑃𝑟 {𝑋 (𝑡 + 𝜏) = 𝑗 |𝑋 (0) = 𝑖}

and Q is the standard (𝐾 + 1) × (𝐾 + 1) generation matrix of the
process. Let’s suppose that the process reaches the steady state,
and let as usual 𝜋 𝑗 = 𝑃𝑖 𝑗 (∞); also define �̃� 𝑗 =

∑𝐾
𝑖=𝑗 𝜋𝑖 . At the

steady-state, the flow of jobs seen by node 𝐵 when its state is 𝑗 is:

_ 𝑗 =

{
_ + _𝐹

𝑗
if 𝑗 ≤ Θ

_�̃� 𝑗 + _𝐹𝑗 otherwise
(1)

where:

_𝐹𝑗 =
1
𝜋 𝑗
_

𝐾∑
𝑖=0

𝜋𝑖 �̃�
′
𝑖+1𝑃𝑖 𝑗 (𝜏) (2)

�̃� ′𝑖 =
𝐾∑

𝑙=𝑚𝑎𝑥 {𝑖,Θ+1}
𝜋𝑙 (3)

When the state is 𝑗 ≤ Θ, see Equ. (1), the node in fact serves
all the jobs coming from its users without any probe (this rate is
_), otherwise it serves jobs from its users if the probed has at least
state 𝑗 . The probed node replies with a state worst than 𝑗 with
probability �̃� 𝑗 . In all states, it receives jobs from other nodes at rate
_𝐹
𝑗
. Equation (3) reflects the probabilities of the following events:

(i) 𝐵 sends a reply message to the probe message reporting state
𝑖 , (ii) the state of 𝐴 was at least 𝑖 + 1 – unless 𝑖 ≤ Θ, in this case
the state of 𝐴 was at least Θ + 1 since no probe messages are sent
when the state is lower or equal to the threshold Θ; (iii) during 𝜏
time units the state of 𝐵 changed from 𝑖 to 𝑗 . These probabilities
are conditioned to the event of 𝐵 being in state 𝑗 .
A solution of the model is a matrix Q∗ whose elements are tied by
Equ. (1) and Equ. (3). Q∗ is computed numerically using a Fixed
Point algorithm: initially, a matrix Q0 is defined with _𝑖 = _. Using
the Equations (1) and (3) (where 𝜋 is solution of 𝜋0Q0 = 0 and 𝑃𝑖 𝑗
are the elements of its matrix exponential), a new generation matrix
Q1 is then computed. From here, another matrix Q2 is derived in
a similar way, and so on, until the maximum difference among
any two elements of the successive matrix is less than an error
𝜖 = 10−13.

Two extreme cases are now considered: (i) state information is
updated, i.e., 𝜏 = 0; (ii) completely uncorrelated states. In the first
case P(0) = I, i.e.:

𝑃𝑖 𝑗 (0) = 𝛿𝑖 𝑗
The state of the probed node cannot change w.r.t. to the reported
value, i.e., no state transition occurs. By substituting this value in
Equ. (3) we get:

_𝐹𝑗 = _
1
𝜋 𝑗

𝐾∑
𝑖=0

�̃�𝑖+1𝜋𝑖𝛿𝑖 𝑗 = _
1
𝜋 𝑗
𝜋 𝑗 �̃�
′
𝑗+1 = _�̃�

′
𝑗+1

so that:

_ 𝑗 = _

{
1 + �̃�Θ+1 if 𝑗 ≤ Θ

�̃� 𝑗 + �̃� 𝑗+1 otherwise
(4)

Randomized Load Balancing under Loosely Correlated State Information in Fog Computing MSWiM ’20, November 16–20, 2020, Alicante, Spain

ForΘ = 0 the above equations describe the dynamic of the power
of two random choices algorithm on a loss queue model [7]. In fact,
the generic balance equation of the 𝑀𝐶 associated to Q becomes
(recall ` = 1):

_(�̃� 𝑗 + �̃� 𝑗+1)𝜋 𝑗 = 𝜋 𝑗+1
Since (�̃� 𝑗 + �̃� 𝑗+1) (�̃� 𝑗 − �̃� 𝑗+1) = (�̃�2𝑗 − �̃�

2
𝑗+1) and 𝜋 𝑗+1 = �̃� 𝑗+1 − �̃� 𝑗+2

the equations can be rewritten in the so-called supermarket fluid
model form (where conventionally �̃�𝐾+1 = 0) [6]:

_(�̃�2𝑗−1 − �̃�
2
𝑗) = �̃� 𝑗 − �̃� 𝑗+1

These equations have the following fluid flow interpretation. In a
population of 𝑁 →∞ nodes, any node sends its jobs to a central
scheduler. The scheduler then sends the jobs to the least loaded
among two random nodes. Here �̃� 𝑗 is interpreted as the fraction of
nodes with at least 𝑗 jobs en-queued.

The second case corresponds to the ideal case of 𝜏 →∞, because
this ensures to observe the node in two random steady states.

𝑃𝑖 𝑗 (∞) = 𝜋 𝑗
hence:

_𝐹𝑗 =
1
𝜋 𝑗
_

𝐾∑
𝑖=0

�̃� ′𝑖+1𝜋𝑖𝜋 𝑗 = _
𝐾∑
𝑖=0

�̃� ′𝑖+1𝜋𝑖 = _
Θ∑
𝑖=0

�̃�Θ+1𝜋𝑖+_
𝐾∑

𝑖=Θ+1
�̃�𝑖+1𝜋𝑖

so that:

_ 𝑗 =

{
_ + _𝐹

𝑗
if 𝑗 ≤ Θ

_�̃� 𝑗 + _𝐹𝑗 otherwise
(5)

The above equation can also be interpreted as following. When the
state is above the threshold, a node serves the job with probability
�̃� 𝑗 otherwise it forwards the job to a random node. As 𝜋 𝑗 is same
for all nodes, the decision to forward can be taken by looking at
the workload history of the node itself (for example, the node can
estimate its occupancy probability distribution over time). A node
at state 𝑗 then forwards a job with the same probability that the
remote node is less loaded than itself, i.e., 1 − �̃� 𝑗 . When even this
info is not used, the algorithm makes blind decisions.

3.1 Performance Metrics
3.1.1 Dropping probability. The probability to drop a job for the
query-based algorithm is:

𝑝𝐵 = 𝜋2𝐾 +
𝐾−1∑
𝑖=Θ

�̃�𝑖+1𝜋𝑖𝑃𝑖𝐾 (𝜏) (6)

because a job is dropped if: (i) the receiving node is full but the job
cannot be forwarded since the receiving node reports it is full as
well (first term), or (ii) the job is forwarded, but during the time 𝜏
the target node becomes full (the job finds the node in state 𝐾) and
drops the job. For the blind one:

𝑝𝐵 = �̃�Θ+1𝜋𝐾 (7)
which reflects the fact that a job is forwarded towards a congested
node, i.e. whose state is 𝐾 .

3.1.2 Control overhead. The control overhead is given by the probe
message rate:

𝑐𝑜𝑣ℎ = _

𝐾∑
𝑖=Θ+1

𝜋𝑖 = _�̃�Θ+1 (8)

3.2 Numerical results
We now provide some numerical results obtained for 𝐾 = 10, for
different loads and delays. The service time is ` = 1.

Load balancing under perfect knowledge. This case represents the
best-case scenario, where updated state information are immedi-
ately available to all nodes. The state of the probed node is always
the same of the reported one, 𝜏 = 0 complete correlation. To limit
the control information overhead nodes set Θ to some proper value
(Fig. 1).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

C
o

n
tr

o
l
o

v
e

rh
e

a
d

λ

Θ=0

Θ=4

Θ=5

Θ=6

Θ=7

Θ=9

Figure 1: Control overhead vs loads.

1e-05

1e-04

1e-03

1e-02

1e-01

 0.98 0.985 0.99 0.995 1

D
ro

p
 r

a
te

λ

Θ=0
Θ=4

Θ=5
Θ=6

Θ=7
Θ=9

Figure 2: Drop rate performance vs loads 𝜏 = 0.

Figure 2 shows the drop rate as a function of the load _ (` = 1)
and different 𝑇 . The threshold is, in this case, an effective way to
reduce the control overhead. WithΘ = 4 the load balancing reaches
almost the same drop rate of Θ = 0 but with much less overhead
(about 1/3 for _ < 0.9).

Load balancing under partial knowledge. While threshold is a
simple way to reduce the control overhead, the amount of control
information can still remain a source of latency so that state pulled
by the probe messages may arrive after some not negligible delay.
Figure 3 shows how 𝜏 affects the drop rate. Simulation results for
𝑁 = 3000 nodes obtained via a custom python simulator are also
shown. The simulated model is very simple as it makes available
state information older of 𝜏 time units w.r.t. the current simulated

MSWiM ’20, November 16–20, 2020, Alicante, Spain R. Beraldi, C. Canali, R. Lancellotti, G. Proietti Mattia

time, while job transmission is instantaneous. For _ = 0.95 and
𝜏 = 0 no losses were observed. These results provide evidence that
the model captures the key behaviour of the algorithm. A more
detailed and realistic simulation study is reported later in the paper.

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 0 1 2 3 4 5

D
ro

p
ra

te

τ

λ=0.99,Θ=4
λ=0.99,Θ=0
λ=0.95,Θ=4
λ=0.95,Θ=0

Simulation λ=0.99,Θ=4
Simulation λ=0.99,Θ=0
Simulation λ=0.95,Θ=4
Simulation λ=0.95,Θ=0

Figure 3: Effect of 𝜏 on the performance.

For a load as high as _ = 0.99, the drop rate increases consid-
erably as soon as 𝜏 > 0. For example for 𝜏 = 0.5, i.e., a half of the
service time, the drop rate increases from 1.17×10−9 to 5.48×10−06
and for 𝜏 = 1 it reaches 1.4 × 10−04, i.e, about 5 order of magnitude
higher than when correct state information are immediately avail-
able. As 𝜏 increases, the drop rate for Θ = 4, is lower than for Θ = 0
because the algorithm makes a lower number of wrong decisions,
e.g., a node forwarding the job to another node that becomes full
after 𝜏 time units from when it had some free place in the queue.
Overall, we then expect that in a real setting even small delays in
getting information will weaken the power-of-random choice effect
of a real system remarkably.

4 SIMULATION RESULTS
To evaluate the performance of the proposed load balancing algo-
rithm, we rely on a discrete event simulator based on Omnet++.
Specifically, we aim to capture the impact of the network delay (and
congestion) on the load balancing effectiveness. To this aim, we
compare the proposed probe-based algorithm and the sequential
forwarding algorithm from literature [1].

For the experiments we focus on a more complex setup derived
from a realistic topology based on an ongoing project of traffic
sensing in Modena, a city in northern Italy of roughly 180’000
inhabitants. The sensors, located in the main city streets, collect
information about traffic and air quality. Fog nodes, placed in mu-
nicipality buildings,exchange data using long-range wireless links
(such as IEEE 802.11ah/802.11af) to interact with the sensors and
among themselves. The scenario description is generated using the
PAFFI framework [2]. As in these links the available bandwidth
decreases with distance, we assume the bandwidth to be inversely
proportional to the distance between the two communication end-
points.We choose bandwidth and job size so that the time to transfer
a job is comparable to the processing time (𝛿 = 1/𝑚𝑢 = 10ms). Each
sensor communicates with the closest fog node: hence, the incom-
ing load on each fog nodes is highly heterogeneous (from 2× the
processing capacity to the case of a highly underutilized fog node).

The average system utilization is 𝜌 = _/𝑟ℎ𝑜 = 0.9. Finally, we set
the queue size in fog nodes to 10 jobs as in [1].

In our experiments we consider two main performance metrics:
(1) Drop rate, that is the probability of a job being discarded due
to the full queue of the selected fog node; (2) Response time, that
is the time between the arrive of the Job at the first fog node and
the end of processing on the final fog node. We also consider the
breakdown of the response time in its following components: Service
time that is the time spent being processed; Balancer time that is
the time spent being forwarded among the fog nodes (as previously
said this contribution can represent the 𝜏 parameter in the model
of Sec. 3); Queuing time that is the time spent in the fog node
ready queue waiting to be processed. Furthermore, we consider the
following parameters to describe each simulation scenario: (1) Θ
is the threshold that triggers the cooperation (in our experiments
Θ ∈ [1, 10], where 10 is the maximum queue length); (2) 𝐹𝑂 is the
fan-out of a probe, that is the number of neighbors to which the
load query message is sent (𝐹𝑂 ∈ [1, 𝑁 − 1], where 𝑁 = 20 is the
number of fog nodes in our simulation).

As pointed out in the theoretical model of Sec. 3, we anticipate the
impact of network delays on the effectiveness of the probe-based
algorithm, and the role that the 𝐹𝑂 parameter may play in the
algorithm performance. Indeed, as 𝐹𝑂 grows, we have a three-fold
effect: (1) we increase the ability of a probe to identify the lowest
loaded neighbor; (2) we increase the delay to complete the probe
due to higher network utilization, resulting in higher probability of
having a stale (and inaccurate) load information; (3) as more nodes
may receive multiple queries in a short amount of time, we may
have a herding effect [4] (when many fog nodes forward their job
to the same less-loaded neighbor, causing its overload).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

T
im

e
 [

s
]

Θ

Response Time (Probe)
Queueing Time

Service Time
Balancer Time

Response Time (Sequential)

Figure 4: Response time vs. Threshold Θ (𝐹𝑂 = 3)

Fig. 4 provides a comparison of the response time achieved by the
probe-based and sequential forwarding algorithms when 𝐹𝑂 = 3.
Furthermore, a breakdown of the contribution of the response time
of the probe-based algorithm is provided.

Comparing the two algorithms we observe that the probe-based
algorithm provides a performance gain in terms of response time
against the sequential forwarding alternative. Furthermore, from
the breakdown of the response time we observe that the time spent
looking for a suitable neighbor (balancer time) decreases with Θ,
for the two-fold reason that (1) the balancing function is activated

Randomized Load Balancing under Loosely Correlated State Information in Fog Computing MSWiM ’20, November 16–20, 2020, Alicante, Spain

with a lower frequency and (2) the lower network utilization (due
to the lower number of probes) results in faster query-response
during the probe phase. On the other hand, as we activate less often
the balancer, we accept to process the jobs on local node with a
potentially higher load, as testified by the higher queuing time.

Having described the basic behavior of our load balancing al-
gorithm we now focus on the impact of the main parameters that
may affect its performance. We start discussing the impact of the
query fan-out 𝐹𝑂 .

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 3 4 5 6 7 8 9 10

D
ro

p
 r

a
te

Θ

FO = 1
FO = 3
FO = 7

FO = 13
FO = 19

Drop rate (Sequential)

Figure 5: Drop rate for different Fan-out 𝐹𝑂

Fig. 5 shows the drop rate vs. the threshold Θ for different val-
ues of 𝐹𝑂 . We observe that the drop rate follows a cup-shaped
curve. The drop rate grows when the threshold is too low due to
load balancing strategy activated even when not necessary, and
interfering with the overall ability to find a suitable neighbor in
case of actual overload. In a similar way, the drop rate increases
when the threshold is too high, because the load balancing is not
activated even in case of overload. As 𝐹𝑂 grows, the curve of the
drop rate become more accentuated. This means that when 𝐹𝑂 is
high, the load returned by the probing phase is uncorrelated with
the load found on the node when the job is forwarded. This effect,
described in the theoretical model for high values of 𝜏 has a twofold
explanation. First, as 𝐹𝑂 grows, the probe takes longer to complete
due to the higher network utilization. As a consequence the load
on the neighbor node have more time to evolve drifting away from
the value provided when answering the query. Second, the herding
effect [4] may occur so that, when a node reports a load lower than
the average, several neighbors will select this node as the target
for job forwarding, causing overload. In the worst cases the curve
assumes the shape close to the sequential forwarding algorithm [1],
when a job is sent to a randomly selected neighbor.

Focusing on Fig. 6, with the response time for different values of
𝐹𝑂 , we observe that the probe-based algorithm is generally faster
compared with the sequential forwarding algorithm with the same
threshold value. Especially for high values of the thresholdΘ, higher
values of fan-out provide a benefit in terms of response time. Indeed
as Θ grows we have less queries and this reduces the impact of the
herding effect and makes the probing mechanism more effective.
A further confirmation of the interaction of the number of queries
with the insurgence of herding effect that hinder the cooperation
effectiveness is provided by the observation that, as 𝐹𝑂 increases,

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 1 2 3 4 5 6 7 8 9 10

T
im

e
 [

s
]

Θ

FO = 1
FO = 3
FO = 7

FO = 13
FO = 19

Response Time (Sequential)

Figure 6: Response time for different Fan-out 𝐹𝑂

the threshold value that provides the best response time increases
from Θ = 2 to Θ = 3, that is towards a case where the number of
queries issued is lower.

5 CONCLUSIONS
In this paper we focus on the load balancing issue of distributing
incoming jobs over the nodes of a fog computing infrastructure.
Our proposal is designed to be fully decentralized, and aims to be a
viable solution for a realistic fog deployment in a smart city scenario
possibly characterized by heterogeneous workload distribution. We
analyze the impact of network latency on the effectiveness of the
selection of fog nodes to allocate the incoming jobs, proposing a
probe-based algorithm for load balancing. We evaluate the per-
formance of our proposal using both a mathematical model and
a simulator. Our analysis revealed that taking schedule decisions
based on state information received even with a small delay com-
pared to the service time reduces the load balancing effectiveness
considerably. To take this effect into account, we studied a thresh-
old probe-based algorithm with small fan-out which is a preferable
choice with respective to the existing alternative especially in a
geographic realistic scenario characterized by a higher level of
heterogeneity in terms of incoming load.

REFERENCES
[1] R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti Mattia. 2020. A random walk

based load balancing algorithm for Fog Computing. In The Fifth International
Conference on Fog and Mobile Edge Computing (FMEC 2020). Paris, France, 1–8.

[2] C. Canali and R. Lancellotti. 2019. PAFFI: Performance Analysis Framework for
Fog Infrastructures in realistic scenarios. In 2019 4th International Conference on
Computing, Communications and Security (ICCCS). Rome, Italy, 1–8.

[3] S. Chen, T. Zhang, and W. Shi. 2017. Fog Computing. IEEE Internet Computing 21,
2 (2017), 4–6.

[4] M. Dahlin. 2000. Interpreting Stale Load Information. IEEE Transactions on Parallel
and Distributed Systems 11, 10 (oct 2000), 1033–1047.

[5] Eli Upfal Michael Mitzenmacher. 2005. Probability and computing: randomized
algorithms and probabilistic analysis. CAMBRIDGE UNIVERSITY PRESS, The
Edinburgh Building, Cambridge CB2 2RU, UK.

[6] Andrea W Richa, M Mitzenmacher, and R Sitaraman. 2001. The power of two
random choices: A survey of techniques and results. Combinatorial Optimization
9 (2001), 255–304.

[7] Qiaomin Xie, Xiaobo Dong, Yi Lu, and Rayadurgam Srikant. 2015. Power of d
choices for large-scale bin packing: A loss model. ACM SIGMETRICS Performance
Evaluation Review 43, 1 (2015), 321–334.

[8] A. Yousefpour, G. Ishigaki, and J. P. Jue. 2017. Fog Computing: TowardsMinimizing
Delay in the Internet of Things. In 2017 IEEE International Conference on Edge
Computing (EDGE). IEEE, Piscataway, New Jersey, US, 17–24.

	Abstract
	1 Introduction
	2 Algorithm definition
	3 A model for stale information
	3.1 Performance Metrics
	3.2 Numerical results

	4 Simulation results
	5 Conclusions
	References

