
 1

Abstract: The hardware technology continues to improve at a

considerable rate. Besides the Moore law increments of the CPU
speed, in the last years the capacity of the main memory is
increasing at an even more impressive rate. One of the
consequences of a continuous increment of the main memory
resources is the possibility of designing and implementing
memory-embedded Web sites in the near future, where both the
static resources and the database information is kept in the
main memory of the server machines. In this paper, we evaluate
the impact of memory and network technology trends on the
performance of e-commerce sites that continue to be an
important reference for Web-based services in terms of
complexity of the hardware/software technology and in terms of
performance, availability and scalability requirements.
However, most of the achieved considerations can be easily
extended to other Web-based services. We demonstrate through
experiments on a real system how the system bottlenecks change
depending on the amount of memory that is (or will be)
available for storing the information of a Web site, taking or not
into account the effects of a WAN. This analysis allows us to
anticipate some indications about the interventions on the
hardware/software components that could improve the capacity
of present and future Web-based services.

Keywords: Web-based services, system architecture, performance
evaluation, bottleneck analysis, client/server.

I. Introduction
Web technology is the standard interface towards many

services that are exploited through the Internet. The demand
for better service performance has driven a technological
trend towards more powerful, integrated, scalable system
components. The capacity of current hardware components
such as processor, main memory, and network interfaces is
continuously growing. The main interest of the scientific
community has always been focused on the impressive growth
of the CPU power that continues to follow the Moore law
[18], although the asymptotic bound seems closer. This
interest has, in a certain measure, masked the fact that, in the
last years, the capacity improvements of the main memory
and the network capacity are even more impressive than the
CPU increases. The combination of these multiple hardware
resource improvements is having or will have important

implications on the performance of the Internet-based
services. In the traditional client-network-CPU-disk path, the
adoption of large main memories, together with CPU speed
improvements, seems a valuable answer to the continuous
research of bottleneck removals that often occur at the disk
side. The trend of adopting large central memories will help
the user to experiment lower response times, but it has the
potential to create novel difficulties to the server component
of an interactive Web-based service [21]. If we limit our
considerations to Web-based services that are of interest for
this paper, we can observe that the size of a typical Web site
in terms of stored information tends to grow slower than the
typical size of the main memory. The reader should consider
that nowadays some Gbytes of RAM are the entry level of any
server machine that supports interactive services with some
performance requirements [8]. And, in the large majority of
cases, the most requested information of typical Web sites
that are implemented through a multi-tier architecture does
not span over some Gbytes of data stored in file systems and
databases. Hence, it seems practicable to foresee the design
and implementation of so called memory-embedded Web
sites, where both the static resources and the database
information is kept entirely in the main memory of the server
machines.

If we pass to consider the network capacity, we can observe
bandwidth improvements at many levels, from the first mile
(that is, the Internet connection of the Web site servers), to
the backbones of the Internet core (excluding peering points
among Autonomous Systems that remain an open issue), to
the last mile where a larger percentage of final users are
adopting fast connection technologies (especially, ADSL and
cable connections) [23]. These network improvements will
certainly have further impacts on the architectures and
performance of the future Web-based services.

Some consequences of these technological trends are
intuitive. For example, we can easily expect that the system
capacity will tend to increase and any Web-based services will
be able to guarantee higher throughputs. Other consequences
are not fully exploited. For example, it is unclear which will
be the new bottlenecks that will bound the maximum capacity
of a Web-based system. In this paper, we aim to answer to

Impact of technology trends on the performance
of current and future Web-based systems

Mauro Andreolini1, Michele Colajanni1 and Riccardo Lancellotti1

1University of Modena and Reggio Emilia,
Department of Information Engineering
Via Vignolese 905, 41100 Modena, Italy

{andreolini.mauro,colajanni,lancellotti.riccardo}@unimo.it

 2

some of these questions by evaluating the impact of hardware
improvement trends, especially main memory and network
capacity, on the performance of e-commerce sites. These
types of Web-based services are important because they will
continue to represent examples of mission critical Internet-
based services, in terms of complexity of the hardware and
software technology and in terms of performance, availability
and scalability requirements. Through endurance and stress
tests, and accurate measurement of coarse grain and fine
grain performance parameters, we show how the system
bottlenecks of a prototype e-commerce site will change as a
function of the amount of available main memory and the
quality of the interconnection between the clients and the
server. Our trend analysis has important consequences
because it allows to anticipate some interventions on the
software components to further improve the capacity of
present and future Web-based services. The three main
contributions of this paper are summarized below.

First, we confirm the intuition that memory-embedded Web
sites have lower response times and better throughput than
sites that keep a significant portion of static and dynamic
information on disk. The obvious reason behind the different
performance is the speed of current storage areas, which is
really slow when compared to the main memory accesses.
The performance gap between disks and main memory
becomes much more evident if we think that every source of
static content has to be fetched from a file system and almost
every source for dynamic content requires information that is
usually fetched from a database server.

Second, for all the considered workload models, we verify
that the back-end node hosting the database server remains
the system bottleneck. However, a fine grain analysis of the
system resources of this back-end node allows us to evaluate
how the bottlenecks change as a function of available amount
of main memory. We distinguish three results. For an almost
memory-embedded database, disk accesses are rare, and the
bottleneck is represented by the CPU of the database server
because of synchronization operations with in-memory data
buffers. When a significant portion of the database (about
50%) is kept in main memory, the system capacity is typically
limited by the number of available socket descriptors, that are
a pool of limited resources. When a small part of the database

is kept in RAM, the disk operations represent the bottleneck
reducing the system capacity.

Third, we evaluate the impact of wide area network effects
on the performance of the considered e-commerce site. We
find out that, when the client-system connections are slow,
the duration of the user session augments, and long lasting
connections tend to exhaust the pool of available socket
descriptors. This may have tragic consequences on the system
performance because descriptors are token-based limited
resources that do not degrade gracefully such as other system
resources (e.g., CPU). On the other hand, when the client-
system connections improve, the system bottleneck tends to
move towards the CPU.

The rest of this paper is organized as following. Section 2
outlines the main functions of the components of a
representative Web-based dynamic site of medium size and
average popularity. Section 3 illustrates the dynamics of a
request service and points out possible performance problems.
Section 4 describes the testing plan that is pursued during the
experiments. Section 5 describes the experimental testbed and
the workload models that are used for the experiments.
Section 6 analyzes the experimental results about the
performance impact of memory technological trends, while
Section 7 focuses on the impact of network bandwidth
features. Section 8 discusses some related work. Finally,
Section 9 concludes the paper with some final remarks.

II. System architectures for Web-based services
After some years of initial innovation and confusion,

today’s basic architectures for building Web systems share a
core set of basic design choices. These choices can be applied
to Web sites providing a mix of static and dynamic content,
as well as Web services that provide interaction between
information systems through a Web interface. Throughout the
rest of the paper, we will use the term Web-based service to
address both Web services and static/dynamic Web sites. In
other words, a Web-based service is considered any Internet
service that uses an HTTP-based interface.

Independently of the large variety of available software
solutions, the typical design of a Web-based service is
nowadays based on a multi-tier logical architecture that tends

Figure 1. Architecture of a dynamic Web site

 3

to separate the three main functions of service delivery: the
HTTP interface, the application (or business) logic and the
information repository. These logical architecture layers are
often referred to as front-end, application, and back-end
layers [2]. Figure 1 shows the main structure of a typical
system providing Web-based services. Beside the clients, we
recognize the three logical components of the system (shown
as boxes), each detailed with its main functions (the ovals
within the boxes). This figure also sketches the fundamental
interactions between the three layers (with solid lines) and
between the main functions provided by each layer (with
dashed lines).

The front-end layer is the interface of the Web-based
service. It accepts HTTP connection requests from the clients,
serves static content from the file system, and represents an
interface towards the application logic of the middle layer (as
shown in Figure 1). The most popular software for
implementing the front-end layer is the Apache Web server,
although others exists, e.g., MS Internet Information
Services, Sun Java System Web Server, Zeus.

The application layer is at the heart of a Web-based
service: it handles all the business logic and computes the
information which is used to build responses with
dynamically generated content. Content generation often
requires interactions with the back-end layer, hence the
application layer must be capable of interfacing the
application logic with the data storage of the back-end. There
is a huge number of technologies for deploying a business
logic on the middle tier. CGI has been the first software
technology for the deployment of dynamic Web sites, but the
performance penalty related to the creation of a CGI process
for every client request has led to the decline of the CGI
popularity. Scripting languages, such as PHP and ASP, are
quite popular for medium size dynamic Web sites.
Component-based technologies belonging to the J2EE family
(such as Java Servlets, JSP and EJB) are considered more
scalable [7] and are often preferred for building medium-to-
large Web sites. The modularity of component-based
technologies also makes the deployment of Web services
easier. Indeed, most Web services are designed with
reusability and composition of basic service facilities in mind:
these concepts are best put into practice through the adoption
of modular (object oriented) design techniques.

The back-end layer manages the main information
repository of a Web-based service. It typically consists of a
database server and storage of critical information that is the
main source for generating dynamic content. Database servers
have a long history and there are many good alternatives.
Nowadays, popular frameworks are provided by Oracle, IBM
DB2, MS SQL Server on the proprietary side, and by MySQL
and PostgreSQL on the open source side.

A complete implementation of a Web-based service
requires the logical design to be followed by an architectural
design. In this latter phase, the multi-tier logical layers must

be mapped on a physical architecture. Even in this phase,
there are many alternative solutions, but the cluster system is
becoming the most common choice for the supporting
platform. A cluster consists of multiple nodes that are located
in the same area network, and a single component that
provides the interface with the external world. For the most
popular Web-based services, the nodes may be distributed
over a geographical area, but in this paper we do not consider
similar architectures.

It is important to observe that there is not a one-to-one
correspondence between the logical layers and the physical
architecture: multiple layers may be mapped on the same
node; alternatively, the same logical layer may be
implemented on multiple nodes. For example, the software
components (front-end, application and back-end servers)
may run on one physical node or on a cluster of nodes [6].
The best choice depends on many factors, such as the adopted
technology, the size and the popularity of the Web-based
service, other security goals and economic constraints. If we
refer to medium size Web sites, the real choice is between two
or three physical nodes, because the common tendency is to
map always the information repository on a separate node.
With present technologies, a software such as J2EE [16]
would lead to a physical separation of the three logical layers
on at least three nodes. On the other hand, scripting
technologies, such as ASP, JSP and PHP, tend to concentrate
the front-end server and the application server on the same
node.

Independently of the mapping choice, the software
components of the Web system are strictly correlated. For
example, the application server relies on the back-end layer to
provide the necessary information for building the application
logic data. If the back-end layer fails or results too slow, the
performance of the application server may be severely
degraded and, as a domino effect, the overall performance of
serving dynamic requests drops. Each component consumes
system resources, such as CPU power, main memory, file and
socket descriptors. These resources are not unlimited, and
usually they get exhausted when the system is subject to high
load. The amount of available resources is a key factor in the
performance of a dynamic Web-based service. When the
amount of available resources varies (for example, a
consistent amount of main memory is added to the system),
the performance of the overall Web system changes. More
importantly, the system capacity may be determined by a
resource bottleneck that is a function of the current software
and hardware layout of the system. Since hardware upgrades
are becoming much more frequent (mainly due to the low
costs of today’s off-the-shelf components), the service
infrastructure is subject to a continuous evolution, which
typically follows the current technology trends. We will show
in this paper that it is not obvious to anticipate the new
bottlenecks introduced by the adoption of new (or even future)
technologies.

 4

In particular, we focus our attention on the technology
trends that characterize the availability of main memory at
the server machines, and the continuous improvements
occurring at the network level.

The cost of the main memory has been constantly
decreasing over years and even entry level computers are now
equipped with amounts of RAM that were found just in top
level workstations just a few years ago. If we consider the
impact that this trend is having and will have on the
information repository for many Web-based services, we can
foresee a radical shift. Most Web-based services are
characterized by an amount of information seldom exceeding
some Gbytes and the growth of data does not tend to follow
the exponential growth of main memory availability. Indeed,
over the years, the amount of main memory installed on
servers hosting the information repository has been steadily
increasing. As a consequence many Web sites are
characterized by a DBMS that can store the whole database
into RAM [19] and this fact is destined to become more
common in the near future.

Besides the obvious performance gain due to the low access
time of RAM if compared to disk, a RAM-based database can
dramatically alter the performance of the Web system by
shifting potential bottlenecks on multiple parts of the Web
system.

In a similar way, wide area network technologies have
dramatically increased the available bandwidth over
geographic links, thus reducing the download time also for
rich media content. Besides some performance gains that may
be easily expected, in this paper we are mainly interested to
evaluate the impact of the technology evolutions on the
internal components of a system supporting a Web-based
service.

III. Request service and potential bottlenecks
Answering to a request reaching a multi-tier Web-based

system is a complex task that triggers the creation and
interaction of several processes. In this section we will refer
to Figure 1 for outlining the main dynamics behind the
service of a client request.

After receiving a request, the request handling module at
the front-end layer invokes the most suitable function for its
service. The interactions are represented in Figure 1 as
dashed lines connecting the request handling module with the
other modules of the front-end layer. Requests for static Web
objects can be satisfied by the static content handling
subsystem at the front-end and do not usually put any
significant load on the system. Indeed, serving static content
typically requires the retrieval of one or multiple objects from
the file system, which is a low overhead operation especially
when the requested file hits the disk cache. The network
adapter connecting the Web infrastructure to the outside
world is the only system component that could be affected by
the service of heavy static contents.

On the other hand, dynamic requests are passed by the
front-end to the application layer through the proper interface
module. The interaction between the two layers is shown as a
solid line connecting the interface modules in Figure 1. The
application layer generates the content through the
cooperation with the back-end tier. The interface with the
front-end activates a set of modules implementing the actual
application logic. The process of activating the modules is
denoted by the dashed line between the interface and the
application logic subsystem. These modules are, typically,
CPU-bound. To fulfil the client request, they can also request
additional information to the back-end layer through the
proper interface. The interaction between the layers is
represented by a solid line in Figure 1.

When the DBMS is placed on a different machine, a
communication between the application server and the DBMS
requires the use of connection descriptors (that is, sockets).
These are critical resources of the operating system, because
they are a limited set.

The DBMS can place a significant amount of stress on
different hardware resources of the server machine depending
on the type of required operations. For example, the CPU may
be loaded by operations related to a complex query, the disk
may be loaded by operations that require many accesses to the
mass storage. It is worth noting the different behavior of the
system resources.

Sockets are token-based resources, which means that only a
finite number of sockets is available and can be assigned to
processes. When the available tokens are exhausted,
additional requests are queued for an unpredictable time (i.e.,
until a token becomes free). A connection request may fail
because the time-out deadline is passed or because it cannot
be stored in the finite-length waiting queue of the service
node.

On the other hand, the server CPU and disk are gracefully
degradable resources, that may be shared among every
process requesting them. Once the resource is fully utilized,
additional requests lead to progressive performance
degradation, but typically no waiting request is refused but in
really critical situations.

IV. Performance testing plan
In this paper we aim to evaluate the effects of technological

trends on the overall performance of Web-based services, and
also to verify whether these trends may modify the
bottlenecks that determine the maximum capacity of the
system that supports Web-based services. The goal of the
performance study determines the approach and the testing
plan used for the experimental analysis.

We use a so called black-box testing to evaluate the
performance of the system and to determine under which
workload conditions the system reaches its maximum
capacity. We also use a so called white-box testing when we

 5

aim to identify the hardware or software resource that
represents the system bottleneck.

In a black-box testing, the system is viewed as an atomic
entity, hence we consider its behavior as it is seen from the
outside. The considered performance indexes are at the
system level. Popular indexes are the response time, and the
throughput that can be measured in terms of served requests
(e.g., pages, hits) per second or Mbytes per second. The main
goal of these performance indexes is to verify whether the
system is providing or not services at an acceptable level of
performance. Black-box testing is also useful for detecting the
trends of system performance as a function of the offered
load. It is a common practice to build a load curve for the
Web system by considering, for example, the average (or,
better, the 90-percentile) of the response time as a function of
increasing request loads. Such a curve allows us to identify a
knee region in which a sudden growth of the response time
occurs. This region denotes that the system is working at its
maximum capacity and at least one of its resources is
critically loaded. Black-box testing does not consider the
internal components of the system, hence it is impossible to
identify the bottleneck that limits the system capacity.

When we have the necessity of a more accurate analysis,
we carry out a white-box testing. In this case, we exercise the
Web system with a client request load around the knee region
that has been identified through the previous black-box
testing, and monitor continuously the status of the internal
resources of the Web system. This type of analysis requires
the evaluation of finer grain performance indexes that are
related to the internal resources of the Web system. We
typically consider the performance at least at the resource
level that are associated to the most important hardware and
software (mostly, operating system) components. Some
examples include: the utilization of the CPU, disk and
network interface, or the amount of free memory at the
hardware level; the number of available file and socket
descriptors at the level of the operating system.

In particular, in this study we take into account cumulative
distributions or percentiles instead of average values related
to the previous performance indexes. The motivation comes
from the observation that higher moments are necessary when
we have to evaluate the performance of systems, such as e-

commerce sites, subject to load arrivals that are characterized
by heavy-tailed distributions [2].

V. Setup of the experiments

A. Experimental testbed

We carried out the entire set of experiments by considering
an e-commerce site as representative Web-based service. The
e-commerce site is implemented by a three-tier logical
architecture that is mapped on a physical architecture
consisting of two server machines. Figure 2 illustrates the
architecture of the prototype system that has been used for the
experiments.

The first node of the Web system hosts the software related
to the front-end and the middle tiers. In particular we use the
Apache Web server [4] for the front-end, and the PHP4 [22]
engine to implement the application logic at the middle tier.
The second node hosts the software for the back-end tier. We
choose MySQL [20] as the database server. To reflect a
realistic workload scenario, we enabled the support for table
locking and two phase commits.

Other machines host the software running the client
emulator, which is used to generate the appropriate volume of
user requests to the Web system.

Each machine of the testbed platform has a 2.4 GHz
hyperthreaded Xeon CPU and is part of a cluster of nodes that
are connected through a Fast Ethernet LAN. Each node is
equipped with the standard Linux operating system (kernel
version 2.6.8), and monitoring tools to collect samples of
performance measures that are necessary for the white-box
testing. In particular, we use the system activity report [11]
tool to collect resource utilization statistics. This tool samples
at regular intervals the utilization of both physical resources
such as CPU, memory and disk, and operating system
resources, such as the number of open sockets and the number
of processes. The output of the system monitor is logged for
off-line analyses.

Since one of the main interests of this study is to evaluate
the impact that the availability growth of the main memory
may have on performance and system bottlenecks, we emulate
three main memory scenarios:

• All in-memory. This scenario represents what we

Figure 2. Experimental testbed

 6

consider the next future, when the whole database
information is likely to fit into main memory.

• Partially in-memory. This scenario represents a
common present case, where just half of the
database information can fit into main memory.

• Mostly on-disk. This scenario represents a past
situation, where the main memory can host only a
small portion of the database information.

For each scenario, Table I reports the percentage details of
database information that can be stored into the main
memory.

We also take into account the evolution of networks where
the current trend corresponds to a general increment of the
available bandwidth together with a reduction of the latency.
To evaluate the impact of this trend on Web system
performance and possible bottlenecks, we emulate different
network scenarios that present a better or worse quality of the
connection between the client emulator and the Web system.

Without the intention and the possibility of recreating the
entire spectrum of Internet effects, we introduce some typical
wide area network effects in the links connecting the client
emulators to the node hosting the front-end layer: packet
delay, loss and bandwidth limitation. To this purpose, we
utilize a WAN emulator that is based on the netem packet
scheduler of the Linux kernel [13]. In this paper, we consider
two network scenarios:

• Well connected clients. We configure the WAN
emulator by using a maximum link bandwidth of 64
Mbit/s and by introducing a packet delay with a
normal distribution with µ = 5ms and σ = 1ms, with
no packet loss.

• Badly connected clients. We configure the WAN
emulator by creating a virtual link between the
clients and Web system with the following
characteristics: 8 Mbit/sec as the maximum link
bandwidth; packet delay normally distributed with µ=200ms and σ=10ms; packet drop probability set
to 1%.

B. Workload model

The choice of a realistic or at least adequate workload
model to test an e-commerce system is an open problem by
itself. In workload models oriented to browsing, the
interaction is basically with the HTTP server and the mix is
mainly oriented to define the number and size of embedded

objects together with the user think time. However, in an e-
commerce service we have dozen of possible alternatives at
any level of the multi-tier architecture, often also dependent
on the adopted software technology. As a consequence, it is
impossible to define THE model for e-commerce services. A
popular choice for the research community that has no access
to actual logs of highly popular e-commerce sites is the use of
the TPC-W benchmarking model. Together with the more
recent SPEC-WEB 2005 [25], TPC-W represents the only
complete specification (workload side and system side) of an
e-commerce site that has been proposed and shared by a large
scientific community [1, 10]. For this reason, a TPC-W like
workload model is the choice of this paper.

In our experiments, the workload mix is composed by 5%
of requests for static resources and 95% of requests for
dynamic resources.

Web traffic is generated by means of a TPC-W like client
emulator, which creates a fixed number of client processes.
Each process instantiates sessions consisting of multiple
requests to the e-commerce system. For each customer
session, the client emulator opens a persistent HTTP
connection to the Web server which lasts until the end of the
session. Session length has a mean value of 15 minutes.
Before initiating the next request, each emulated client waits
for a specified think time, which is set to 7 seconds on
average. The sequence of requests is determined through a
state transition diagram that specifies the probability to pass
from one Web request to another one.

The standard user behavior is to start its interaction with
the Web site from the home page. The user may use a search
function to select an item to purchase or browse products by
category. Once an item has been selected, the user may
browse a product description and place the related item in the
shopping cart. Finally, the user may checkout the items in the
shopping cart through a purchase transaction. This
description represents a typical user interaction, but more
complex user behaviors (such as aborting a transaction or
removing items from the shopping cart) may occur, even if
with a lower probability. A complete description of the state
transition diagram of the user behavior is reported in [1].

VI. Performance impact of memory capacity

A. Bottleneck identification

In this section we analyze to what extent the technological
trends concerning main memory may influence the
performance of a Web-based service and may shift the
bottlenecks across different components and resources of the
Web architecture.

We first evaluate the response time for the three memory
scenarios when the Web system is subject to increasing loads.
The goal is to understand, for each of the proposed scenarios,
the request arrival rates at which the Web architecture starts
to evidence a clear bottleneck. Figure 3 shows the 90-

Scenario
Available RAM
[% of DB size]

All in-memory 100 %
Partially in-memory 60 %

Mostly on-disk 30 %

Table 1. Memory scenarios

 7

percentile of the response time as a function of the client
population for the three memory scenarios. A comparison
among the three curves shows that the impact of available
main memory on the response times is much less significant
than the impact on system capacity. The scarce influence of
the main memory on response times is visible in Figure 3,
that reports the 90 percentile of Web object response times as
a function of user population. The main motivation is that,
when the system is not overloaded, the amount of necessary
main memory does not exceed the physical limits of the
corresponding node, and no (slow) virtual memory
management takes place. As a consequence, the response
time is bound by the following operations: Web page
construction (mainly CPU-bound), access to storage facilities
(DISK-bound), and use of network resources for
communication. This confirms the intuition that additional
main memory on the back-end node increments the system
capacity. We now want to investigate the reasons behind the
impact of the main memory size on the maximum capacity of
the Web system. To this purpose, for each memory scenario,
we first identify a critical value of the client population that
leads to a sudden degradation of the system performance: this
corresponds to the so called knee of the response time curve.
As we proceed from the mostly on-disk scenario (called
simply on-disk in the following of this section) to the partially
in-memory to the all in-memory scenario (in-memory), from
Figure 3 we can see that the maximum number of clients that
can be served without significant performance degradation
increases from 30 to 270 to 330, respectively.

Once found the critical load that determines the maximum
system capacity for each memory scenario, it is interesting to
investigate the nature of the bottlenecks that limit the system
capacity. This analysis requires a deeper comprehension of
the internal behavior of the system components, that we have
called white-box testing.

In a Web architecture consisting of multiple layers, the first
step requires the identification of the layer causing the system
bottleneck. The standard procedure is to split the contribution
to the response time among its components that are related to

the front-end, the application and the back-end layers. As
example, Figure 4 shows the breakdown of the response time
for the partially in-memory scenario. The histograms
represent the 90-percentile of the three contributions for two
population values. The bar on the left is related to a number
of clients lower than the system capacity (equal to 270 users),
while the bar on the right reports the breakdown for a client
population higher than the system capacity.

A comparison between the two histograms shows that
when the critical number of requests is reached, there is a
sudden increase of the response time contribution referring to
the back-end layer. Similar studies with the other memory
scenarios confirm these conclusions. In all experiments, the
increase in the back-end time drives the performance
degradation of the system shown in Figure 3 for the
considered TPC-W workload model. Hence, we can easily
conclude that the bottleneck is always related to the
operations at the database server node.

B. Resource-level analysis

After the identification of the maximum capacity of the
Web architecture in terms of number of concurrent users (in
correspondence of the knee of the curves), we pass to analyze
the causes behind the bottlenecks that limit the capacity of the
system. To this purpose, we carry out a white-box
performance testing for the three memory scenarios and a
population of clients in proximity of the identified knees. For
the on-disk scenario we consider a population of 60 clients;
for the partially in-memory scenario we consider a population
of 300 clients, and for the in-memory scenario we consider a
population of 360 clients. For each experiment, we monitor
accurately the utilization of the main system resources.
Recalling the dynamics behind a client request detailed in
Section 3, we conclude that the main performance indexes
that may evidence a system bottleneck are: CPU utilization,
disk I/O activity (in terms of disk transactions per second)

Figure 3. Response time of the Web system for
different memory scenarios

Figure 4. Breakdown of the Web system response time
(partially in-memory scenario)

 8

and number of open sockets. For this reason, we have
instrumented a system monitor that provides regular samples
of these three performance indexes on every node of the Web-
based cluster infrastructure. As we will see, our analysis
shows that these three indexes allow us to identify the
resource bottleneck under every considered memory scenario,
and to evidence how the system bottlenecks change
depending on the amount of main memory.

On-disk scenario

The most significant results about the white-box analysis for
the on-disk scenario are shown in Figure 5 that reports the
main performance parameters of the back-end node as a
function of the time elapsed from the beginning of the
experiment (x-axis).

In particular, Figure 5(a) shows the number of open sockets
at the back-end server node throughout 1000 seconds of the
experiment. Figure 5(b) shows the CPU utilization that is
split into kernel and user mode: the kernel mode refers to the
CPU operations related to the operating system, such as
process scheduling, context switches and system call services;
the user mode relates to the application processes. Since we
are monitoring the back-end node, the CPU utilization in user
mode is almost exclusively due to DBMS operations. Finally,
Figure 5(c) shows the disk I/O activity that is reported as disk
transactions per second throughout the experiment.

The first observation deriving from Figure 5(b) is a very
low CPU utilization (below 0.1). This allows us to exclude the
CPU from the list of possible bottleneck resources. Next, we
observe a number of simultaneously open sockets that is

significantly lower than in other experiments (see Figure
6(a)), but that is highly variable with a range spanning from
20 to 60 open sockets. This leads us to conclude that the
number of open sockets does not represent a system
bottleneck for this scenario because 60 is far below the
number of 105 sockets that are available at the database
server.

However, the high variability of the number of open
sockets deserves some motivations. Since the database server
is equipped with a limited amount of memory, most database
operations are delayed by the disk accesses. The long database
service time increases the number of concurrent client
requests, thus leading to a high number of open sockets even
for low numbers of user requests.

When we pass to analyze the disk performance, we notice
an almost constant throughput in terms of operations, always
close to 150 transactions per second. To have a guarantee that
the disk represents the system bottleneck for the on-disk
scenario, we evaluated the maximum disk throughput for the
considered architecture. To this purpose, we use the iozone
[15] tool which allows us to evaluate the maximum
throughput when the disk is subject to complex
read/write/seek patterns, as in the case of database operations
of the TPC-W workload that we have used for the
experiments.

Other related tests show that 160 disk operations per
second represent the maximum achievable throughput for the
considered workload. This result evidences that the disk is the
only system resource that operates close to the maximum of
its capacity.

(a) Open Sockets (b) CPU utilization (c) Disk Activity

Figure 6. Resource utilization on back-end node (partially in-memory scenario)

(a) Open Sockets (b) CPU utilization (c) Disk Activity

Figure 5. Resource utilization on back-end node (on-disk scenario)

 9

Partially in-memory scenario

Figures 6(a), (b) and (c) show the socket, CPU and disk
utilization for the partially in-memory scenario, respectively.
With respect to the on-disk scenario, in this case, we observe
a significant increment of the CPU utilization and the number
of contemporary open sockets, while the disk activities tend to
decrease. It is worth to consider that these utilization levels
are reached for a number of served requests that is more than
nine times the number related to the on-disk scenario (from
30 to 270). This consideration motivates the sudden
increment of the CPU utilization combined with a low
decrement of the disk utilization, even although more than
half of the database is kept in main memory. But the most
significant result is that for the partially in-memory scenario,
neither the CPU nor the disk of the database server are system
bottlenecks. Initially unexpected, the system capacity in this
case is limited by the number of sockets. Indeed, from Figure
6(a) we can observe that the number of open sockets on the
DBMS node is always equal to the maximum capacity that is
set to 105.

 In-memory scenario
Figure 7 shows the resource utilization for the in-memory

scenario. Identifying the system bottleneck for this case is a
straightforward task, because the disk is almost not used at all
(Figure 7(c)); the number of open sockets is around 20 (see
Figure 7(a)), a value that is far below the maximum limit set
to 105. On the other hand, Figure 7(b) shows a CPU
utilization close to 1 with a 0.8/0.2 ratio between the time
spent in user and kernel space. The immediate conclusion is
that for the in-memory scenario the system bottleneck is
represented by the CPU of the back-end node.

This initially unexpected result suggests that the
computations at the application level are much more intensive
than the cost necessary for the system calls. As there is only
one major process running on the back-end node, we can
easily assume that the DBMS process is the real source of the
system bottleneck.

Nevertheless, if we limit the performance analysis at this
level of granularity, we cannot exactly motivate the high CPU
utilization of the database server application. To identify the

hot spots in the database server process we should pass to get
measurements at the function level. To this purpose, we
utilize a system profiler from which we get that the function
that checksums asynchronous I/O buffers uses almost 70% of
the CPU time. This function is part of the asynchronous I/O
buffer management of the MySQL DBMS. Asynchronous I/O
is used to improve I/O performance by caching frequently
accessed portions of the database, thus bypassing the
operating system disk buffer cache. To provide data
consistency a checksum is calculated on every buffer. Hence,
we can conclude that the asynchronous I/O subsystem is the
real bottleneck of the mysqld process.

It is tricky to solve this CPU bottleneck at the database
server. The most straightforward option seems to purchase a
faster CPU that can provide higher computational power.
However, this solution has a limited scalability. The best
alternative to improve the database performance is to reduce
the checksumming activity by decreasing the number of
buffer accesses. For example, this can be easily carried out by
augmenting the size of the query cache.

Summary of results

We can conclude that the amount of memory on the back-
end node of a multi-tiered Web system is having and will
have a fundamental impact on system performance. Although
some results were expected, the experiments evidenced some
novelties. For example, increasing the available memory
augments the system capacity, but does not reduce
significantly the response time observed by the client.
Moreover, it is quite interesting to verify how the memory
availability alters in a fundamental way the system bottleneck
that limits the performance of the architecture.

In particular, the possibility of storing half of the Web site
information in main memory has a super-linear benefit on the
system capacity that in our case improves of more than eight
times. Storing even the remaining part of the Web site
information in memory augments the system capacity of
“just” an additional 30%. With different system architectures,
the effects would be different, even if our experience leads us
to conclude that the first half memory storage produces the
main increment of the system capacity. The in-memory
scenario does not improve the system capacity with respect to

(a) Open Sockets (b) CPU utilization (c) Disk Activity

Figure 7. Resource utilization on back-end node (in-memory scenario)

 10

the partially in-memory scenario such as it has been done in
the passage from the in-disk to the partially in-memory
scenario. Indeed, the system for the partially in-memory
scenario works for high request rates, but it is in very bad
conditions that is, the disk and the CPU are really highly
utilized, and the set of available sockets is almost exhausted.
A platform where all the most important system resources are
critically loaded is something that any system manager must
avoid. In some sense, this situation is even worse than that
shown by the on-disk and of in-memory scenarios where just
the disk (or the CPU) is a clear system bottleneck in a context
where the other resources are not critically loaded.

VII. IMPACT OF NETWORK
IMPROVEMENTS

We now evaluate the impact of the trends of the network
technology on the system performance and related effects on
the system bottlenecks. Many parts of the Internet, including
the last mile links, are being characterized by larger
bandwidth, lower latency and lower packet losses, and this
trend is likely to increase.

For evaluating the consequences that this trend may have
on Web-based services, we use the same testbed architecture
and workload model of the previous section, with the addition
of an emulator of WAN effects between the clients and the
front-end node of the Web system. We consider the all in-
memory database and partially in-memory database scenarios,
and two main network scenarios: well connected and badly
connected clients. The experiments related to these scenarios
lead to the four curves reported in Figure 8 where we show
the results of a black-box testing. This figure reports the 90-
percentiles of the response times as a function of the number
of requests reaching the Web site (i.e., client population).

As expected, the quality of the connection has a direct
impact on the overall response time. Passing from a large
majority of clients that are badly connected to the opposite
scenario has a twofold effect on performance: good network

connectivity reduces the response time by an order of
magnitude, and the Web system can serve a larger number of
requests.

It is interesting to observe that the network connectivity
seems to have an impact on performance even more
consistent than the possibility of having a memory-embedded
Web site. The two couples of curve for badly connected
clients are close, although the improvement of the all in-
memory scenario is the most sensible. The system capacity for
the partially in-memory scenario in terms of managed
requests increases by 50% (from 180 to 270 clients), while for
the all in-memory scenario the increment reaches 83% (from
180 to 330 clients). However, the real impact of a combined
trend that improves network connectivity and augments the
main memory size cannot be fully explained without a white-
box performance analysis that aims to identify the system
bottlenecks.

For the partially in-memory scenario, the resource
utilization is not significantly modified by the characteristics
of the network connections. The number of open sockets on
the database server for both network scenarios remains the
system bottleneck. Hence, we do not report the results for this
memory scenario.

If we focus on the all in-memory scenario, we can observe
a clear modification of the system bottleneck depending
whether we consider good or badly connected clients. In the
latter case, the disk activity is low, and the bottleneck is
related to the number of open sockets. In the former case, the
bottleneck remains the CPU of the database server.

Figure 9 shows the number of open sockets sampled during
the experiment for both network scenarios. From this figure,
it is immediate to get two results. First, the number of sockets
simultaneously used by the database server is five times
higher in the badly connected scenario with respect to the
good connection case: on average, 20 vs. 105, where 105 is
the maximum number of concurrent connections for the
database. Second, in the badly connected scenario, all
available socket descriptors at the database are used. The

Figure 8. Response time for different types of network
connections and main memory size

Figure 9. Number of utilized sockets by the back-end server
in the two network scenarios

 11

exhaustion of the number of open sockets due to poor network
connectivity is a phaenomenon that resembles the socket
bottleneck caused by many delayed disk accesses. As for the
delay introduced by the disk access, the connections between
the application server and the database server last much
longer in the badly connected scenario because of the network
slowdown of client requests. We should consider that sockets
are token-based resources that are not gracefully degradable.
This means that, once the number of available sockets is
exhausted, further requests to the database server must wait
without receiving service until a token is freed. Hence, the
contention due to accessing the limited pool of available
sockets results in an additional queuing delay. This delay
(waiting for a free socket) has the effect of further increasing
the concurrency level of requests on the database. This leads
to an amplification of the phenomenon that resembles
thrashing. The macroscopic effect of socket shortage is the
poor performance of the application server and back-end
server components.

The insight provided by the bottleneck analysis allows us to
explain the similarity between the two performance curves
shown in Figure 8 in the badly connected scenario for the
considered memory cases. When the wide area network
effects introduce a significant performance penalty, both the
all in-memory and the partially in-memory scenarios are
characterized by the same bottleneck due to socket
exhaustion.

Table 2 summarizes the bottlenecks for the four
combinations of memory and network scenarios. It is worth to
note that the bottlenecks due to socket exhaustion are likely to
arise whenever a client request service is delayed, either by
the disk or by the network. An important consequence, that
we should consider if we want to improve the system
capacity, is that increasing the CPU power and/or augmenting
the main memory size for storing the entire database do not
solve every performance problem. Indeed, a special attention

on token-based resources is highly recommended especially
because they are likely to be consumed in the case of high
concurrent load. This may lead to poor performance even in
over-provisioned systems with large amount of RAM and
computational power.

VIII. Related work
The literature regarding the impact of technological trends

on the performance of devices and services is scarce. One of
the few examples is provided in [24], where the author
discusses the state of the art of the late 1990’s CPUs and the
latest technological trends of chip development. The work is
interesting because it contains a precise estimate of how the
CPU work frequencies are supposed to increase until 2012.

Multiple papers compare different technologies for
dynamic Web-based sites. For example, in [1, 10, 12, 17, 26]
the authors evaluate the performance of J2EE and PHP
implementations of the same e-commerce system. However,
the performance comparison in these studies is limited to the
scalability of each technology and does not focus on the
impact of technological trends on the system bottlenecks, as
carried out by our paper. Furthermore, all these studies share
the common trait of focusing on a coarse grain performance
analysis of the systems at most at the node level, with no
evidence of the real causes behind poor performance.
Conclusions are inferred either from indirect measurement or
from coarse-grained system activity reports. On the other
hand, our performance evaluation integrates both a coarse
and a fine grain analysis to provide a deep insight on the
causes of the system bottlenecks.

Other studies illustrate different aspects of Web systems
testing. For example, in [27, 14] a fine grained analysis of the
performance on HTTP servers is provided. However, these
studies focus on Web sites serving mainly static Web
resources and do not take into account the complexity and the
interactions of a Web site providing highly dynamic and
personalized contents.

There is no general consensus on the most useful
performance indexes for the evaluation of a dynamic Web-
based system, although some effort has been put on their
identification. For example, in [3] the authors study the
performance of dispatching algorithms in multi-tier
architectures, providing some insights into the choice of
appropriate load monitoring indexes. They find out that the
most critical load monitoring index is that associated to the
bottleneck resource of the system. M. Dahlin [9] addresses the
problem of using stale server load information in the context
of distributed systems. The author proposes some algorithms
for interpreting server state information based on its age that
may help to improve the performance of dynamic Web-based
systems.

The effects of Wide Area Networks on Web server
performance has been pointed out in [21, 5]. However, both
studies are limited to a single Web server hosting static
contents, and do not take into account the consequences of
different client bandwidths on the performance of the entire
Web system. This is a limit because our experiments have
demonstrated that packet delays and losses have a great
influence even on the performance of the back-end server.

IX. Conclusions
There is a close relationship among the bottlenecks

PARTIAL

IN-MEMORY
All

In-memory

Well connected
clients

socket CPU

Badly connected
clients

socket socket

Table 2. System bottlenecks for the conidered memory
and network scenarios

 12

limiting the system performance and the hardware
characteristics of the underlying platform. Hence, to achieve
adequate performance improvement it is important to
investigate the technology trends so to anticipate the types of
interventions that should be undertaken at the operating
system and server software level.

 Our study is a first step towards this direction and gives
some clear messages about the impact that current
technological improvements concerning main memory and
network capacity may have on performance and bottlenecks
of Web-based services. In particular, we consider an e-
commerce Web site implemented on a multi-tier architecture,
that is subject to a TCP-W like workload model. Throughout
a large set of experiments for different memory and network
scenarios, we confirm some intuitions and achieve other less
expected results. In particular, we show how the bottlenecks
limiting system performance change depending on the
amount of main memory available at the server machines and
on the characteristics of the network interconnection between
the client and the Web system.

This paper has shown that a clear understanding of
technological trends and an analysis of their implications on
Web systems help to foresee both present and future
bottlenecks that hinder the performance of the Web-based
services. Such a knowledge is also invaluable when it comes
to choose the main interventions during system consolidation
and capacity planning studies.

References
[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J.

Marguerite, K. Rajamani, and W. Zwaenepoel. Specification and
implementation of dynamic web site benchmarks. In Proc. of the IEEE 5th
Annual Workshop on Workload Characterization (WWC-5), Nov 2002.

[2] M. Andreolini, M. Colajanni, R. Lancellotti, and F. Mazzoni. Fine grain
performance evaluation of e-commerce sites. ACM Performance
Evaluation Review, 32(3), Dec. 2004. Special Issue on E-Commerce.

[3] M. Andreolini, M. Colajanni, R. Morselli. Performance study of
dispatching algorithms in multi-tier Web architectures. In ACM
SIGMETRICS Performance Evaluation Review, 30(2), pages 10-20, Sep
2002.

[4] Apache foundation, 2005, Apache httpd server - http://httpd.apache.org
[5] P. Barford, M. Crovella. Measuring Web Performance in the Wide Area.

In IMA “Hot Topics” Workshop: Scaling Phaenomena in
Communications Networks, Minneapolis, Oct 1999.

[6] V. Cardellini, E. Casalicchio, M Colajanni, P. S. Yu. The state of the art in
locally distributed Web server systems. ACM Computing survey
34(2):263-311, 2002

[7] E. Cecchet, A. Chandra, S. Elnikety, J. Marguerite and W. Zwanapoel.
Performance comparison of middleware architectures for generating
dynamic Web content. In Proc. of 4th middleware conference, Jun. 2003

[8] W. Chiu Design pages for performance, IBM High Volume Web Systems,
2001

[9] M. Dahlin. Interpreting Stale Load Information. In IEEE Transactions on
Parallel and Distributed Systems, 11(10), Oct 2001.

[10] R. C. Dodge, D. A. Menasce, and D. Barbara. Testing e-commerce site
scalability with TPC-W. In Proc. Of 2001 Computer Measurement
Group Conference, Dec. 2001.

[11] S. Godard. Sysstat: System performance tools for linux OS, 2004. –
http://perso.wanadoo.fr/sebastien.godard/.

[12] X. He and Q. Yang. Performance evaluation of distributed web server
architectures under e-commerce workloads. In Proc. of the 1st Int’l
Conference on Internet Computing (IC’2000), Jun 2000.

[13] S. Hemminger netem: Network emulator, 2005. –
http://developer.osdl.org/shemminger/netem/.

[14] Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis and performance
improvement of the apache web server. International Journal of
Computers and Their Applications, 8(4), Dec. 2001.

[15] IOzone filesystem benchmark, 2005. – http://www.iozone.org/.
[16] Java Technology. Java 2 platform,enterprise edition (J2EE), 2005 –

http://java.sun.com/j2ee/index.jsp.
[17] K. S. Juse, S. Kounev, and A. Buchmann. Petstore-ws: Measuring the

performance implications of web services. In Proc. of the 29th Int’l
Conference of the Computer Measurement Group (CMG) on Resource
Management and Performance Evaluation of Enterprise Computing
Systems -CMG2003, Dec. 2003.

[18] G. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), 1965.

[19] D. Morse. In memory database Web server. Dedicated systems magazine,
2000.

[20] MySQL database server, 2005 – http://www.mysql.com/
[21] E. M. Nahum, M.-C. Rosu, S. Seshan, and J. Almeida. The effects of wide-

area conditions on www server performance. In Proc. of the 2001 ACM
SIGMETRICS int’l conference on Measurement and modelling of
computer systems, pages 257– 267, 2001.

[22] PHP scripting language, 2005 – http://www.php.net/.
[23] M. Rabinovich and O. Spatscheck. Web caching and Replication,

Addison Wesley, 2002
[24] U. Rude. Technological trends and their impact on the future of

supercomputers. In International FORTWIHR Conference on HPSEC,
Muenchen, Mar 1998.

[25] Standard Performance Evaluation Corporation (SPEC). SPECweb2005
suite - http://www.spec.org/benchmarks.html#web

[26] L. Titchkosky, M. Arlitt, C. L. Williamson. A performance comparison of
dynamic Web technologies. In SIGMETRICS Performance Evaluation
Review, 31(3), pages 2-11, Dec 2003.

[27] H. Xie, L. Bhuyan, and Y.-K. Chang. Benchmarking web server
architectures: A simulation study on micro performance. In Fifth
Workshop on Computer Architecture Evaluation using Commercial
Workloads (CAECW-02), with HPCA-8, Feb 2002.

Mauro Andreolini is currently a researcher in the Department of Information
Engineering at the University of Modena, Italy. He received his master degree
(summa cum laude) at the Univeristy of Roma, “Tor Vergata”, in January 2001,
and the Ph.D. degree in computer engineering from the University of Roma “Tor
Vergata” in 2004. In 2003, he spent eight months at the IBM T.J. Watson
Research Center as a visiting researcher.
His research focuses on the design, implementation and evaluation of distributed
Web server systems, based on a best-effort service or on guaranteed levels of
performance. He is a Standard Performance Evaluation Corporation (SPEC)
technical responsible for the University of Modena. He has been in the
organization committee of the IFIP WG7.3 International Symposium on
Computer Performance Modeling, Measurement and Evaluation
(Performance2002). For additional details, see:
http://weblab.ing.unimo.it/people/andreoli

Michele Colajanni is a full professor of computer engineering at the
Department of Information Engineering of the University of Modena. He was
formerly an Associate Professor at the same University in the period 1998-2000,
and a Researcher at the University of Roma Tor Vergata. He received the Laurea
degree in computer science from the University of Pisa in 1987, and the Ph.D.
degree in computer engineering from the University of Roma “Tor Vergata” in
1991. He has held computer science research appointments with the National
Research Council (CNR), visiting scientist appointments with the IBM T.J.
Watson Research Center, Yorktown Heights, New York. In 1997 he was
awarded by the National Research Council for the results of his research
activities on high performance Web systems during his sabbatical year spent at
the IBM T.J. Watson Research Center.
His research interests include scalable Web systems and infrastructures, parallel
and distributed systems, performance analysis, benchmarking and simulation. In
these fields he has published more than 100 papers in international journals,
book chapters and conference proceedings. He has lectured in national and
international seminars and conferences.
Michele Colajanni has served as a member of organizing or program committees
of national and international conferences on system modeling, performance
analysis, parallel computing, and Web-based systems. He is the general chair of
the first edition of the International Workshop on Advanced Architectures and
Algorithms for Internet Delivery and Applications (AAA-IDEA2005). He is a

 13

member of the IEEE Computer Society and the ACM. For additional details, see:
http://weblab.ing.unimo.it/people/colajanni

Riccardo Lancellotti received the Laurea and the Ph.D. degrees in computer
engineering from the University of Modena and from the University of Roma
“Tor Vergata”, respectively. He is currently a Researcher in the Department of
Information Engineering at the University of Modena, Italy. In 2003, he spent
eight months at the IBM T.J. Watson Research Center as a visiting research
student.
His research interests include scalable architectures for Web content delivery and
adaptation, peer-to-peer systems, distributed systems and performance
evaluation. Dr. Lancellotti is a member of the IEEE Computer Society. For
additional details, see: http://weblab.ing.unimo.it/people/riccardo

