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Abstract—The growth of large scale sensing applications (as
in the case of smart cities applications) is a main driver of
the fog computing paradigm. However, as the load for such fog
infrastructures increases, there is a growing need for coordination
mechanisms that can provide load balancing. The problem is
exacerbated by local overload that may occur due to an uneven
distribution of processing tasks (jobs) over the infrastructure,
which is typical real application such as smart cities, where
the sensor deployment is irregular and the workload intensity
can fluctuate due to rush hours and users behavior. In this
paper we introduce two load sharing mechanisms that aim to
offload jobs towards the neighboring nodes. We evaluate the
performance of such algorithms in a realistic environment that
is based on a real application for monitoring in a smart city.
Our experiments demonstrate that even a simple load balancing
scheme is effective in addressing local hot spots that would arise
in a non-collaborative fog infrastructure.

I. INTRODUCTION

Fog computing promises to change the architecture of
software applications from the current cloud-only support
to a multi-layer system, where computational facilities are
available at each level along the path from data sources to
a centralised cloud data centre, [1]. This deployment model,
which materializes with an intermediate computational layer
called Fog, will address demanding constraints on response
time (order of 10 ms), throughput (order of 10 Gbps), as well
as high security and privacy [2].

In this paper, see Fig. 1, we consider a model where fog
nodes are densely distributed in a given geographic area and
provide a service to end devices, e.g., IoT. For instance, these
nodes are integrated into the radio access networks of the 5G
(F-RAN) architecture, [3] and support the implementation of
a Smart City, as detailed in the IETF Internet-Draft [4] or an
object detection vision service as described in [5]. The cloud
layer, instead, is used as a support to the fog one, indeed, in
our perspective when requests cannot be executed in the fog
they are supposed to be forwarded to the cloud.

From the research point of view, fog computing introduces
several challenges (see [6] for a general discussion). A re-
search topic currently under investigation is the design of an
algorithm for resource sharing among uncoordinated and het-
erogeneous fog nodes. Although resource sharing is a classical
and well-studied topic in the computer science community, this

Fig. 1. A typical fog computing deploy model.

model of fog computing does not fit all the assumptions of the
studies available in the literature. In particular, the following
elements are new to the fog deployment: (i) the execution time
of a job is comparable to the time required to transfer the
job from the node of origin to another node; (ii) the absence
of a centralized entity that acts as a load balancer; (iii) the
heterogeneity among resource availability and local scheduling
policies.

This work proposes two load balancing algorithms, dubbed
sequential forwarding and adaptive forwarding designed to
take these peculiarities into account. The algorithms allocate
jobs that are continuously generated from end devices (on-line
load balancing). The basic idea of the proposed algorithms
is the following. We assume that the fog computing layer
provides an elementary service to end-users, e.g., consisting
in object detection inside a video frame [5]. When a new job
arrives at a fog node, the node estimates the current waiting
time of the job, i.e., the time the job is supposed to wait
before its execution ends. If this time is considered too long
(based on a threshold value that may be self-tuning), the fog
node forwards blindly the job to another nearby fog node. This
node, in turn, follows a similar decision process. The algorithm
is repeated up to a certain number of trials or steps M , after
which the job is no longer moved, i.e., the last node has to



serve the job or drop it if congested. A different way to look at
the cooperation mechanism supported by these algorithms, is
as a random walk routing process with maximum lifetime M
steps, searching for a suitable node that can serve the job. The
algorithm fits the three challenges of fog computing because it
places a significant effort in limiting the number of (potentially
expensive) hops between nodes, it is completely distributed
and it does not rely on the assumption of a homogeneous
scenario, taking explicitly into account the absence of uneven
load distributions. Since the waiting time at a node depends on
its processing rate or other local policies, for example based on
a priority, the algorithm, thanks to its simple formulation, can
be easily adapted to deal with heterogeneous resources and
local scheduling policies. In addition, we believe that these
features and the simplicity of the forwarding decisions, e.g.,
the lack of probing or resource reservation mechanisms [7],
make the algorithm suitable for the fog model and allows to
address the underlying multi-objective optimization problem
of maximizing the number of served jobs and minimizing their
waiting time in a simple and feasible way. The contribution
of the paper can be summarized as follows:
• definition of a lightweight randomized on-line distributed

load balancing algorithm characterized by independent
providers and heterogeneous load conditions, along with
a variant based on a self-tuning mechanism

• mathematical analysis and experimental evaluation of the
algorithms on a realistic scenario, showing evidence of
significant improvements compared to unbalanced nodes,
e.g., loss rate reduced from 25% to 5% and up 0% for
the adaptive case, shorter response time of about 40%.

The rest of this paper is organized as follows. Section II
describes the proposed algorithms while Section III describes a
mathematical model of the protocol. In Section IV, we provide
both numerical results from the model and a simulation study
where the proposed algorithms are applied to a realistic
scenario of a smart city application deployment. Section V
discusses related works while conclusions and future research
directions are provided in Section VI.

II. SEQUENTIAL FORWARDING ALGORITHMS

In this section, we describe the proposed distributed load
balancing algorithms. The intuition behind our proposal is to
obtain resource sharing by fairly forwarding jobs to randomly
sampled nodes until the node receiving a job guesses that a
less loaded node exists in the network.

We recall that our reference architecture is described in
Fig. 1, with a set of sensors sending jobs to a set of nodes.
Each sensor is assigned to one fog node, selected, for example,
based on geographic distance as in [8]. The workload of fog
nodes can be highly heterogeneous, due to fluctuations in the
workload patterns or simply because the sensors are not evenly
distributed among the fog nodes [9]. Furthermore, we assume
that the fog nodes are able to interact among themselves by
forwarding jobs from one node to another1. In this section, we

1For example, the X2 interface allows direct communications among 5G
eNB nodes.

present two algorithms aiming to define when a Job should be
forwarded to a neighbor, and to which neighbor the job should
be forwarded.

In particular, we start by describing the Sequential Forward-
ing algorithm; next, we describe an evolution of this algorithm
Adaptive Forwarding algorithm. It is worth noting that these
algorithms operate blindly with respect to the state of the
other nodes, so the choice of the neighbor that will receive
the forwarded job is random. Finally, we discuss a baseline
algorithm, namely No LB, that is the case where no load
balancing occurs among the fog nodes.

A. Sequential Forwarding algorithm

The Sequential Forwarding algorithm uses a threshold Θ
to determine whether an incoming job is to be forwarded to a
random neighbor or not. The threshold is applied to the system
load, which is the number of jobs queued in the fog node (or
being executed). This metric is used as an estimation of the
waiting time for the incoming job. Furthermore, the algorithm
defines a maximum number of steps M to guarantee a bound
on the delay experienced by each job during the load balancing
phase.

Algorithm 1 Sequential Forwarding Algorithm
Require: M , Θ, Job

if Job.Steps ≥M then
ProcessLocally()

else
if System.Load() ≤ Θ then

ProcessLocally()
else

Neigh ← Random(System.Neighbors())
Job.Steps++
Forward(Job, Neigh)

end if
end if

Algorithm 1 provides an overview of the proposed load
balancing approach. When a job arrives, if the job has already
been forwarded M times, we schedule the job for local
processing. The local processing is carried out with a server
with a finite queue, where we denote the maximum queue
length as Q. The queue in the processing node is responsible
for the drop of the job is the queue is full. As our focus is
on the cooperation algorithm, we consider the queue length
as a constant value of limited interest for our analysis. If we
haven’t reached the M -th step we consider the number of jobs
already scheduled for processing in the fog node (that is the
system load). If the value does not exceed the threshold Θ, the
job is accepted and scheduled for local processing. Otherwise,
we blindly select a random neighbor among the fog nodes and
we forward the job to that neighbor. We stress the blind and
memoryless nature of the algorithm so that we do not need to
probe the status of the neighbor nor there is the need to adapt
any kind of resource reservation (to make sure that the job
can find a resource available after probing [7]). This makes



the algorithm extremely simple to implement and facilitates
its adoption among different providers.

B. Adaptive Sequential Forwarding algorithm

The Sequential Forwarding proposed in Sec. II-A has two
separate parameters, Θ and M , that show an inherent inter-
dependence. Indeed, if Θ is low we are likely to experience
a high number of forwarding, thus making M crucial for
the algorithm performance. This complex parameters tuning,
that can be even worsened in the case of heterogeneous
environments, leads us to conceive an adaptable version of
the algorithm.

The Adaptive Sequential Forwarding algorithm (in the fol-
lowing simply called Adaptive Forwarding), is an evolution
of the Sequential Forwarding proposed in Sec. II-A aiming to
provide some self-tuning ability.

Algorithm 2 Adaptive Forwarding Algorithm
Require: M , Job
Q← System.QueueLen()
Θ← dJob.Steps * Q/Me
SequentialForwarding(M , Θ, Job)

Algorithm 2 illustrates the behavior of the Adaptive For-
warding Algorithm. The threshold Θ is computed in such a
way that it grows linearly with the number of steps. If a job
has never been forwarded (or has been forwarded just a few
times), the job is not processed locally unless the local load
is very low. On the other hand, if a job has already been
forwarded several times we assume a more relaxed attitude
towards the search of a fog node with a low load.

The first lines of the algorithm compute the threshold Θ
that grows linearly with the number of times the job has been
forwarded. In particular, we tune the growth of the threshold
in such a way that, after M steps, the threshold Θ is equal to
the maximum queue length of a fog node, thus guaranteeing
that the job will be accepted unless this last visited node has
no room in its queue.

C. Baseline algorithm

In the performance evaluation, we consider also the No LB
algorithm, that is the case where no load balancing occurs, as
a baseline.

For the algorithms previously described, and given Q as the
maximum length of queue (as in Algorithm 2), the behavior
corresponds to the case where Θ > Q or to the case where
M < 1. This algorithm is expected to be characterized by a
high loss rate (that is jobs dropped because the queue is full),
unbalanced load (especially in scenarios with heterogeneous
load distribution among the fog nodes) and, generally by poor
performance.

III. MODEL

Having described the algorithms overview, we now propose
a mathematical model to describe the system performance. We

focus on the Sequential Forwarding algorithm operating in a
homogeneous and simplified scenario.

We consider a system of N identical fog nodes in the limit
of N → ∞, each receiving a Poisson flow of job requests,
with rate λ request per unit of time. The duration of a job
is exponentially distributed with an average processing rate of
µ. A single fog node is abstracted as a FIFO queue with Q
places included the server. The key assumption is that as N
grows these queues become independent from each other so
that we can focus on and study a single queue [10]. The rates
of the Continuous Time Markov Chain (CTMC) describing
the queue dynamic are:

µi = 1 λi = λ

{
1−πM+1

Θ

1−πΘ
i ≤ Θ

πMΘ i > Θ
(1)

where πi is the steady-state probability that there are j > i
jobs in the queue, that is the state of the queue. The reason for
the above formula is the following. Let i be the current state
of the queue. When i ≤ Θ, the node accepts any incoming
job. The flow of such jobs is λ. In addition, it may accept a
job J forwarded by other fog nodes. This occurs when the
job J was received by another fog node n, whose state was
higher than Θ, and: (i) n sent J to our tagged node – the flow
of this type of jobs is λπΘ or (ii) J is forwarded k times to
other nodes whose state was higher than the threshold as well,
and then the k-th node sent J to our tagged node. Summing
up these flows we get:

λ+ λπΘ

M−1∑
k=0

πkΘ = λ
1− πM+1

Θ

1− πΘ
(2)

For i > Θ, the queue only accepts a job if the job has
already visited other M queues having already more than Θ
jobs waiting for service.

The actual values that solve the equation can be determined
numerically using a fixed point algorithm. We assume the
steady-state solution of the CTMC is a unique fixed point
F (~P ) = ~P , where ~P is the state vector and F is a function
that computes the stationary solution of an M/M/1/Q queue
whose rates are defined by Eq. 1. We assume that ~µ is known
(we assume µi = 1,∀i = 0, . . . , Q) while ~λ takes the role
of a parameter. Considering ~λ as a parameter is a reasonable
assumption due to the independence among nodes [10]. The
steady-state solution is numerically computed starting with a
state vector where p0 = 1 and pi = 0,∀i = 1, . . . , Q, this
because at the beginning every node is obviously at the initial
state. From this initial vector, the first ~λ is computed and
then state vector updated. This scheme keeps iterating until
the euclidean distance between ~P and ~P ′ of two consecutive
iterations ε is less than a pre-defined value (in our case
ε ≤ 10−13). The solution of the queue is the base for the
definition of the following metrics: (i) average number of steps
of a job, (ii) average queue length of a fog node, (iii) response
time of a job and, (iv) loss probability of a job.



The average number of steps before a job is served S can
be defined as follows:

S =

{
0 i ≤ Θ, or M = 0

(1− πΘ)
∑M
k=1 kπ

k
Θ i > Θ

(3)

In fact, due to the independence among nodes, a job is
served by the first queue out of the M possible trials, whose
state is less than Θ.

The second relevant metric, that is the average queue length
can be defined as:

WQ =

Q∑
k=1

kπ′k (4)

where π′i is the steady state probability of the state i, π′i =
πi−1 − πi.

Knowing that the average time for a job to be forwarded and
allocated to another fog node is δ and that the average service
time is 1/µ, we can determine the average response time from
the time spent waiting in the queue defined in Eq. (4) and the
number of steps S as in Eq. (3)

Tr =
1

µ
+ δS +

1

µ
WQ (5)

Finally, a job is discarded if, over the M steps, no node
was found with a load below Θ. The loss probability can be
defined as:

pB = πMΘ π′Q (6)

IV. EXPERIMENTAL RESULTS

Throughout this section, we evaluate the performance of
the proposed algorithms. We start describing the scenarios
considered in our performance evaluations, next we discuss
the main findings concerning the sequential forwarding algo-
rithm, using both the numerical solutions of the model and
a stimulative approach in a simplified scenario. After this
preliminary evaluation, we focus on a highly heterogeneous
scenario, based on a realistic geographic setup for a smart
city and we evaluate in detail both the Sequential forwarding
and the adaptive sequential algorithms.

A. Scenarios definition

In our experiments we consider both a simplified scenario,
used for the initial evaluation of the sequential forwarding
algorithm, and a realistic scenario based on a fog infrastructure
aiming to support a smart city application. We anticipate that,
in the simplified scenario, we use for the evaluation both the
model proposed in Sec. III and a simulation. On the other
hand, due to the complexity of the realistic scenario, we rely
only on the simulator to analyze both sequential forwarding
and adaptive forwarding algorithms.

The first scenario, namely simplified scenario, models the
fog nodes as M/M/1/Q queuing systems, with an exponential
distribution of both incoming jobs from the sensors and job
service in the fog nodes. Concerning the workload, we assume
λ = 0.9 jobs/sec (average rate of incoming jobs), while µ =

1 job/sec (average processing rate), resulting in an expected
system utilization ρ = 0.9. In our fog nodes, we assume a
queue length Q = 10. Each fog node is connected to just one
sensor and the network delay between each pair of fog nodes
is δ = 0.1s, that is the delay experienced every time a job
is forwarded. In this scenario the model assumes an infinite
number of fog nodes, while for the simulation, we consider
a set of 20 fog nodes, that should be enough to capture the
main characteristics of the algorithm performance.

The second scenario, namely the realistic scenario, is based
on a case study carried out in Modena, a city in northern Italy
of roughly 180’000 inhabitants. The proposed fog infrastruc-
ture uses a set of fog nodes to collect data on the vehicular
traffic and on the air quality (a goal of the study is to contribute
to the development of detailed models on the air pollution).
The sensors for this application should be located on the main
city streets, while a set of fog nodes are located in facilities
belonging to the municipality. Long-range wireless links (such
as IEEE 802.11ah/802.11af [11]) are used to transfer data
from the sensors to the fog nodes and among the fog nodes
themselves. Each sensor transmits the data to the nearest fog
node, as in [8], and we assume the delay among fog nodes to
be proportional to the distance between them.

The fog node behavior is modeled based on preliminary
prototypes of the project, where a sensor captures images
using a camera when movement is detected. The frames are
sent to the fog node that should identify and count vehicles
within each frame to create a real-time map of the traffic
intensity throughout the city. The process of producing images
is modeled using an exponential distribution. The processing
time of a frame has been measured using a prototype and it
can be described using a Gaussian probability distribution with
an average value depending mainly from the image resolution.
In our experiments, we consider that the average processing
time 1/µ = 10ms (and with a standard deviation of 1ms),
comparable with the average network delay, set to the same
value of δ = 10ms (that would correspond to a QVGA frame
with a high JPEG compression factor transmitted over a long
range IEEE 802.11ah link with a bandwidth in the order of
4Mbps). The network is based on a realistic setup of the fog
infrastructure created using the PAFFI framework [9], with 100
sensors and 20 fog nodes. Due to the geographic placement
of elements, the workload intensity is heterogeneous among
the nodes, the workload intensity λ for each fog node ranging
from 250 jobs/sec (2.5 times the processing rate of a fog node)
to some fog nodes that are almost idle. The average load over
the whole infrastructure is such that the average utilization
ρ = λ/µ = 0.9.

From a software tools point of view, the fixed point algo-
rithm is implemented using Matlab2, while the simulation is
based on the Omnet++ framework3, with additional modules
developed ad-hoc to support the two proposed load balancing
algorithms.

2https://www.mathworks.com/
3https://omnetpp.org/



Throughout the performance evaluation, the main perfor-
mance metrics considered are:
• Loss rate, that is the probability of a job being discarded

because the queue of the selected fog node is completely
full. This condition is described for the model in Eq. (6).

• Average Number of steps, that is the average number of
forwarding for a job before the job is processed – for the
model, refer to Eq. (3)

• Response time, that is the time occurring between the
moment the Job is received from the first fog node, to
the moment the processing ends on the final fog node.
The response time model is described in Eq. (4). For the
simulator, in some cases, we consider useful to provide
a breakdown of the response time components: that are
service time (the time spent being processed), balancer
time (the time spent being forwarded among the fog
nodes), and queuing time (the time spent in the fog node
ready queue waiting to be processed).

• Fairness, that is the measure of load balancing effec-
tiveness. To quantify the fairness in the heterogeneous
system, we consider the Jain index applied to the fog node
utilization ρ. This measure is particularly interesting in
the realistic scenario, characterized by high heterogeneity.

We recall that the Jain index for N resources is defined as:

J (ρ) = ρ2/ρ2 =
1

1 + cv(ρ)2
(7)

where ρ = {ρi, . . . , ρN} is the set of utilization values for the
N fog nodes, and cv(·) is the coefficient of variation, that is
the ratio between the standard deviation and the average.

B. Evaluation in the simplified scenario
We now evaluate the impact of the values of the parameters

Θ and M on the performance of the Sequential forwarding
algorithm using the simplified scenario. In this set of experi-
ments, we also compare the results from the model described
in Sec. III with the results obtained using the simulator as
cross-validation of the two methodologies.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1  2  3  4  5  6  7  8  9

L
o
s
s
 r

a
te

Threshold Θ

Simulation M=1

Simulation M=8

Model M=1

Model M=8

No LB

Fig. 2. Loss rate vs. Threshold Θ

The first analysis, shown in Fig. 2 concerns the loss rate as
a function of Θ for different values of M . The performance

of the No LB case is clearly poor, with a loss rate close
to 5%. The sequential forwarding algorithm provides a clear
benefit, with a loss rate significantly lower. Depending on Θ,
the loss rate shows a cup-shaped curve, where the (relatively)
high loss rate for low values of Θ are related to the case
where a Job, after being forwarded M times due to the
highly selective threshold, arrives at an overloaded node and is
therefore dropped. For high values of Θ the opposite occurs
and the scarcely effective load balancing determined by the
high threshold results in a generalized risk of overload in the
nodes. In this behavior, the parameter M plays a major role
as it changes the number of chances a job has before being
dropped. Clearly, the higher is M the lower is the loss rate.

Finally, comparing the results of the model and the simu-
lator, we observe that both approaches capture the main char-
acteristics of the algorithm. The discrepancy in the numeric
value is likely due to the relatively low number of nodes used
in the simulation.
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Fig. 3 shows the average number of steps of a job before
being processed. Again, we observe a clear reduction in the
number of steps as the threshold Θ decreases due to the less
stringent requirement on the number of queued jobs (load) in
the sampled node. Moreover, even the maximum number of
steps M plays a role as it may force a stop in the search
for a fog node with a low load. The impact of M is more
evident when Θ is low: indeed reaching a node with a very
low load is a condition that may hard to fulfill if the number of
steps is limited. The curve also shows that when this limitation
is removed, i.e. M increases, the number of steps increases
of a small amount, demonstrating that the random walk is a
powerful mechanism for distributing the load. Again the main
findings are confirmed by both the numerical results and by
the simulations.

Finally, Fig. 4 shows the total service time Tr of a job. We
observe that in most cases (that is, as long as Θ < 8 and for
every value of M ), the proposed algorithm outperforms the No
LB alternative from both from the response time and loss rate
points of view. It is worth noting that, as Θ grows, the load
balancing action becomes less effective, resulting in higher
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response time. Again the results from both the simulation and
the model are comparable, thus offering good cross-validation
of the findings.

C. Evaluation in the realistic scenario

We now focus on the realistic scenario, that is a case where
loads are unevenly distributed over the fog nodes, the network
link delays are uneven and where the processing time is no
longer described as an exponential (that is the fog nodes
are described as M/G/1/Q queuing network elements). In this
analysis, we consider both the sequential forwarding algorithm
and its adaptive sequential extension, using only the simulator
to evaluate the algorithm performance.
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Fig. 5 shows the breakdown of the contributions to the
response time: service time, balancer time and queuing time.
The values are provided for M = 5, but are representative of
the typical behavior of the algorithm.

Service time (1/µ) is constant, as expected, because it is
a fixed parameter of the scenario. The balancer time (that is
the time spent being forwarded) decreases as Θ grows. This
behavior is consistent with the number of hops already shown
in Sec. IV-B for the simple scenario.

For the queuing time, we observe a non-monotone behavior.
For the first part (Θ = 1) we have a non-negligible impact of
the last step (that is the M -th step), where the threshold is
not considered. This determines a non-negligible amount of
cases where the selected final fog node has a high load, thus
explaining the higher queuing time. For the remaining part
(Θ ≥ 2) the queuing time grows with Θ because the threshold
is less selective when we select whether we want to jump or
not. As a consequence, we accept to have a job processed on
nodes with a higher load, resulting in a longer queuing time
(again, this behavior has already been described for the simple
scenario in Sec.IV-B.

Hence, the response time is the sum of the three contri-
butions. For low values of the threshold, we observe a high
response time that is determined by both the higher number
of steps and by the slightly longer queuing time. As a final
remark, it is worth to note that the response time has a
minimum for Θ = 2
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Having understood the behavior of the sequential forward-
ing algorithm, we now evaluate the adaptive forwarding al-
gorithm. To this aim, we recall that this algorithm aims at
providing stable results without the need to tune Θ carefully.
Indeed, at every step, the threshold Θ is increased by a value
equal to Q/M so that, after M steps, the threshold is equal to
Q and the forwarding is guaranteed to end. In this analysis,
we consider M as the main parameter.

Fig. 6 shows the breakdown of the response time for the
adaptive forwarding algorithm. As in Fig. 5 the service time
remains constant, as expected. For the other contributions to
the response time, we observe that when M is very low (e.g.
M = 1) the algorithm cannot perform any adaptation: with
the first step the threshold is already Q and the behavior is
identical to the No Load Balancing case. As M grows we
observe the emergence of the adaptive behavior: the balancer
time grows with M because the increase in Θ is Q/M , hence it
is inversely proportional to M . As consequence as M grows,
more steps are required to tune the threshold. On the other
hand, with the increase of M , the queuing time is reduced
because we have more chances to find a fog node with a



sufficiently low threshold value. The final result is a confir-
mation that the algorithm shows stable performance. Indeed,
while the sequential forwarding algorithm is characterized by
a small range of Θ values where the minimum response time is
found (shown in Fig. 5 for Θ = 2) in the adaptive forwarding
algorithm we have a large plateau of similar performance
(for M ≥ 6) where the adaptive algorithm guarantees stable
performance.
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Aiming to compare the main algorithms considered in this
paper, in Fig. 7 and 8 we present the loss rate and the response
time for the sequential forwarding, adaptive sequential a No
LB approaches. As we are comparing algorithms with different
parameters, we place on the X-axis both the threshold Θ,
meaningful for the sequential forwarding algorithm and the
maximum number of hops M for the adaptive sequential
algorithm.

We recall that the considered scenario is characterized
by a highly heterogeneous workload distribution, due to the
geographic placement of sensors and fog nodes. The workload
distribution can cause overload in part of the infrastructure
while other fog nodes are badly underutilized. This explains
the bad performance of the No LB algorithm where the loss
rate is in the order of 25% (curve not shown in Fig 7 where
the Y-axis is limited to 3%). On the other hand, the loss rate is
below 0.5% for the sequential forwarding, with a cup-shaped
curve similar to the one already discussed in Sec. IV-B. For the
adaptive forwarding, we do nor register any loss in the range
M ≥ 6, providing the best performance in a load balancing
algorithm. Even more important, the good performance are
stable over a large range of values, confirming the ability of
the algorithm to self-tune its parameters.

The performance gap is also confirmed by the comparison
of the response time in Fig. 8, with the No LB algorithm, pro-
viding an average response time of 52 ms. On the other hand,
the sequential forwarding algorithms can reach a response time
of just 31 ms (for Θ = 2), with a reduction of 40% compared
to the No LB alternative. The adaptive forwarding reaches the
same value of 31 ms, but this performance level is available
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Fig. 8. Response time comparison of considered algorithms

for a larger range of values (for M ≥ 6), confirming the more
stable performance.
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Fig. 9. Fairness comparison of considered algorithms

Given the uneven load distribution that characterizes the
experimental setup, we also consider the ability of the algo-
rithms to provide a load sharing among the nodes. We quantify
this ability using the Jain fairness index applied to the fog
nodes utilization ρ (the index has been introduced in Eq. (7)
in Sec. IV-A). The results are shown in Fig. 9.

The No LB algorithm shows the highly unbalanced load
distributions that characterize the considered experimental
scenario, with an index close to 0.86.

The Sequential forwarding algorithm provides a very good
load balancing when the threshold Θ is low (due to the
aggressive load forwarding carried out). As the threshold
increases, the fairness decreases as we accept more often to
process jobs on a node with an already high load.

The adaptive forwarding algorithm presents a level of
fairness that increases with the parameter M , confirming the
general behavior of this parameter on the algorithm. It is
worth noting that, for M ≥ 7 the fairness index is equal to
1, meaning that the adaptive algorithm can provide a highly
effective load balancing.



V. RELATED WORK

A short summary of relevant research papers related to our
problem is provided below.

In [12] an algorithm called Multi-tenant Load Distribution
Algorithm for Fog Environments (MtLDF) has been proposed
to optimize load balancing in Fogs environments considering
specific multi-tenancy requirements. However, the proposed
load balancing scheme adopts a centralized fog management
layer that receives all the state information about the fog nodes.
Our solution is fully distributed.

In [13], the tasks that the nodes are called to complete, are
characterized according to their computational nature and are
subsequently allocated to the appropriate host. Edge networks
communicate through a brokering system with IoT systems
in an asynchronous way via the Pub/Sub messaging pattern.
However, again a centralized workload balancer is required by
the solution.

In [14], An approach similar to the sequential forwarding
algorithm is used. However, the proposed solution requires
either a centralized repository to store the load state of
each fog node or needs a specific protocol to send updates
on the load state of each node. Our approach, based on a
blind forwarding provides good performance without complex
coordination structures.

In [15] an approach is presented to periodically distribute
the incoming tasks in the edge computing network so that the
number of tasks, which can be processed in the edge com-
puting network, is increased, and the quality-of-service (QoS)
requirements of the tasks completed in the edge computing
network are satisfied. The model, however, assumes that a
batch of tasks to be assigned is available, i.e., the tasks are
not processed online as in our algorithm.

Finally, the idea of randomly select nodes to offload a task
is used in the class of power-of-choices algorithms, adapted in
[16], [17] to work in the fog deploy model. The key difference
with the algorithm proposed in this paper is that tasks are
forwarded without making any selection among alternatives
and that self-adaption is absent.

VI. CONCLUSIONS AND FUTURE WORK

Throughout this paper, we proposed two new algorithms,
namely sequential forwarding and adaptive forwarding, for
the load balancing in a fog computing infrastructure. Our
proposals aim to provide fair load sharing in a scenario
characterized by a highly heterogeneous workload distribution
as it the case of a realistic fog deployment. The algorithms are
designed to be simple and fully decentralized without relying
on any probing or reservation mechanisms.

We tested our proposal using both a mathematical model
and a simulator. Our experiments in a realistic scenario prove
how the algorithms outperform the case of no load balanc-
ing (No LB). The experimental evidence shows a loss rate
dropping from 25% for the No LB case to less than 0.5%
for the sequential forwarding algorithm, and up to 0% for
the adaptive sequential forwarding. Furthermore, the response
time is reduced by 40% by both the proposed algorithm w.r.t.

the No LB case while achieving a perfect fairness condition
(Jain index close to 1). In addition, we remark how the self-
tuning adaptation mechanism can provide stable performance
in terms of low response time and low loss rate for a wider
range of configuration load parameters and load conditions.
This paper is just a first step in a broader research line. We are
currently investigating an extension of the current algorithms
taking into account fog nodes with heterogeneous processing
rates and mechanisms for the adaptive algorithm that consider
non-linear relationship between the threshold and the number
of steps.
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