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Received 27 April 2004; received in revised form 28 October 2004; accepted 14 January 2005

Available online 7 March 2005

Responsible Editor: E. Cohen
Abstract

Systems consisting of multiple edge servers are a popular solution to deal with performance and network resource

utilization problems related to the growth of the Web. After a first period of prevalent enthusiasm towards cooperating

edge servers, the research community is exploring in a more systematic way the real benefits and limitations of coop-

erative caching. Hierarchical cooperation has clearly shown its limits. We show that the ‘‘pure’’ protocols (e.g., direc-

tory-based, query-based) applied to a flat cooperation topology do not scale as well. For increasing numbers of

cooperating edge servers, the amount of exchanged data necessary for cooperation augments exponentially, or the

cache hit rates fall down, or both events occur. We propose and evaluate two hybrid cooperation schemes for document

discovery and delivery. They are based on a semi-flat architecture that organizes the edge servers in groups and com-

bines directory-based and query-based cooperation protocols. A large set of experimental results confirms that the com-

bination of directory-based and query-based schemes increases the scalability of flat architectures based on ‘‘pure’’

protocols, guarantees more stable performance and tends to reduce pathologically long response times.
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1. Introduction

Web caching has evolved as the first way to ad-

dress Web server and network resource utilization

issues related to the growth of HTTP requests. The

initial idea of using one edge server shows very low
ed.
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cache hit rates even in a context of homogeneous

users. The proposed solutions aim to establish

interactions among various cooperating edge serv-

ers. Global caching or cooperative caching architec-

tures are used by public organizations (e.g.,
IRCache [1], NLANR [2]). The same basic idea

of sharing Web resources among multiple servers

can also be used by Internet Service Providers

and by third party companies, such as Content

Delivery Networks (e.g., Akamai [3], Speedera [4]).

After a first period of prevalent enthusiasm to-

wards cooperating edge servers, the research com-

munity is exploring in a more systematic way the
real benefits and limitations of cooperation. While

there is no doubt that Web caching improves per-

formance when applied to a limited working set [5]

(for example, successful CDN companies apply

some sort of Web caching only to content of their

customer sites), the debate is open over the benefits

of cooperation when applied to the entire Web

content. We will consider the main results in Sec-
tion 7, which discusses the related work.

In this paper, we focus on cooperative schemes

for resource discovery and delivery that are tradi-

tionally based on two classes of ‘‘pure’’ protocols

coming from the theory on distributed systems:

query-based [6–8] and directory-based protocols

[9,10]. We claim and demonstrate that any ‘‘pure’’

protocol is affected by some or all of the following
drawbacks: limited scalability, the cooperation

overhead increases more than linearly for higher

number of cooperative nodes, the performance

(especially cache hit rates) is unstable because

too much dependent on the workload/system

characteristics.

Hence, we propose and evaluate two main hy-

brid cooperation protocols (and a variant of both
of them) that are based on a semi-flat organization

of the edge servers. The idea is to improve cache

hit rates, to achieve more stable performance and

to reduce pathological delays [11] by splitting the

resource discovery process in two steps and com-

bining ‘‘pure’’ query-based and directory-based

protocols. To this purpose we organize the cooper-

ating edge servers in subsets belonging to two
aggregation levels. The first level aggregates edge

servers in ‘‘groups’’ that are created on the basis

of physical characteristics of the interconnections
among the nodes. The second level aggregates edge

servers in ‘‘subsets’’ containing at least one repre-

sentative node for each group. The idea is to allow

a global lookup of the resource, without having to

contact each edge server. We have implemented a
prototype for each proposed scheme by modifying

the Squid software [12].

Although we can agree with the results of Wol-

man et al. [13] about the limited improvement of

cache hit rates in very large-scale collaborative

Web caching, we should consider that cache hit rate

is not the only measure of interest [11]. To this pur-

pose, we find that hybrid cooperation schemes ap-
plied to a semi-flat topology can successfully

reduce network traffic (especially over wide area

links) without penalizing other metrics of interest

for the end user. The schemes proposed in this paper

show a better scalability than the ‘‘pure’’ protocols

because they save network bandwidth for coopera-

tion (one order of magnitude less than query-based

protocols), guarantee same response time of query-
based protocols, and do not penalize cache hit rates

as it occurs to directory-based protocols applied to

a flat topology of many cooperating edge servers.

Furthermore they reduce the variance of the

response times. The proposed protocols also show

a much better stability than the ‘‘pure’’ protocols

because their performance results are insensitive

to network and workload characteristics.
The rest of this paper is organized as following.

Section 2 shows the limits of the ‘‘pure’’ cooperation

schemes. Section 3 gives qualitative motivations for

the choice of the proposed cooperation schemes.

Section 4 describes the hybrid cooperation proto-

cols proposed in this paper. Section 5 describes the

workload models used in the experiments. Section

6 reports the experimental results showing that hy-
brid protocols are the most viable solution for the

performance stability of cooperative Web caching

even over large numbers of cooperating edge serv-

ers. Section 7 discusses the related work. Finally,

Section 8 presents some conclusions.
2. Limits of pure cooperation schemes

There are two main knobs to be handled in the

design of a cooperation scheme among multiple



1 Some implementations keep records of the node state, so the

query is not sent to overloaded or temporarily off-line edge

servers.
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edge servers: cooperation topology and cooperation

protocol. Cooperation can be established along a

vertical direction, namely hierarchical Web cach-

ing descending from the Harvest project [14], or

along an horizontal direction, namely flat or dis-
tributed Web caching [15]. In hierarchical architec-

tures, a cache miss will result in looking for the

resource to an upper level edge server [16]. In flat

architectures, every edge server is supposed to be

at the same level of the others, and missed re-

sources at one edge server are looked for in all

cooperating nodes.

Hybrid architectures have been studied as well.
Rodriguez et al. propose a hierarchical structure

with cooperation among the edge servers at the

same level [17]. Tewari et al. investigate the advan-

tages of cooperation using a hierarchical discovery

mechanism based on partial cache index distribu-

tion with a flat retrieval scheme, where an HTTP

connection to a cooperating edge server is set up

only in the case of hit detection [18].
Hierarchical architectures follow the idea

of hierarchical Internet organization, with local,

regional and international network providers.

However, various studies have shown that a coop-

eration over N-tiers has scalability and coverage

problems, especially for large sets of cooperating

edge servers. There are so many results describing

the drawbacks of pure hierarchical topologies
especially for large N values [18,10,19,6,13], that

in this paper it seems more convenient to limit

the research space for alternative topologies to flat

(N = 1 tier) and semi-flat (N = 2 tiers) archi-

tectures.

Any cooperation scheme among a set of distrib-

uted edge servers has to define a protocol to ex-

change some local state information. The two
main and opposite approaches to disseminate state

information are well defined in literature: query-

based protocols in which exchanges of state infor-

mation occur in response to an explicit request

by an edge server, and directory-based protocols

in which state information is exchanged among

the cooperating nodes in a periodic way or at the

occurrence of a significant event, with many possi-
ble variants in between.

Query-based protocols are conceptually simple.

When an edge server experiences a local miss, it
sends a query message to all of the cooperating

edge servers1 in order to discover whether one of

them caches a valid copy of the requested resource.

In the positive case, the recipient edge server re-

plies with a hit message, otherwise it may reply
with a miss message or not reply at all. This

query-based solution was proposed by the Harvest

project [14], and then implemented in NetCache

[20] and Squid [12]. The last two use the Internet

Cache Protocol (ICP) as their query mechanism

[7].

Let us summarize the main pros and cons of the

query-based class of cooperating protocols. On the
positive side, they have a high cache hit rate that,

in a local area, is nearly insensible to the number

of involved edge servers, to the cache capacity,

and to the frequency of client requests (the exper-

iments of which we are reporting the results are de-

scribed in great details in [21]). The overhead for

cooperation is the main drawback of this class of

protocols that is evidenced by our experiments.
The number of bytes required for cooperative doc-

ument discovery increases more than linearly when

the number of cooperating edge servers augments.

This result occurs for any kind of workload, and it

represents a limit to the scalability and stability of

query-based protocols. Increasing the number of

cooperating edge servers leads to scalability prob-

lems because there is an increment of both the
number of ICP queries and the number of recipi-

ents of each query. The scalability and stability

problems of query-based protocols are even more

serious when they are applied over a geographic

context. For example, in [10] it has been shown

that cooperation overhead may become unaccept-

able even with less than 10 cooperating edge

servers.
Directory-based protocols are conceptually

more complex than query-based schemes, espe-

cially because they include a large class of alterna-

tives, of which the two most important are: the

presence of one centralized directory or multiple

directories disseminated over the cooperating edge

servers; the frequency for communicating a local
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change to the directory/ies. It is impossible to dis-

cuss here all the alternatives that have been the

topics of many studies. We limit our analysis to

distributed directory-based schemes, because it is

common opinion that in a geographically distrib-
uted system any centralized solution does not

scale: the central directory server may represent a

bottleneck and a single point of failure, and it does

not avoid the query delays during the lookup

process.

In a distributed directory-based scheme, each

edge server keeps a directory of which URLs are

cached in every other cooperating node, and uses
the directory as a filter to reduce the number of

queries. Distributing the directory among all the

cooperating nodes avoids the polling of multiple

edge servers during the discovery phase, and in

the ideal case makes object lookup extremely

efficient. However, the ideal case is affected by

large traffic overheads to keep the directories

up-to-date. Hence, real implementations use
multiple relaxations, such as compressed directo-

ries (namely, summary) and less frequent informa-

tion exchanges to save memory space and network

bandwidth, respectively. Our experiments in [21]

show that the cache hit rate of the summary-based

schemes is heavily dependent on many parameters.

In particular, it diminishes as the number of coop-

erating edge servers increases, and even when the
working set augments more than the cache capac-

ities. Moreover, we found a (stronger than ex-

pected) correlation between the cache hit rate of

summary-based protocols and the frequency of cli-

ent request arrivals. On the positive side for this

kind of protocols, we have that the overhead for

cooperation is really low and almost independent

of the number of nodes: the traffic generated for
cooperation is even three orders of magnitude

lower than that caused by query-based protocols.

We can conclude that the cause of limited scala-

bility of query- and directory-(summary-)based

protocols is that they enforce the same coopera-

tion method between any pair of edge servers.

Moreover, the use of the same scheme makes the

performance of the ‘‘pure’’ protocols heavily
dependent on workload and system characteristics.

It is not hard to find the perfect combination of

parameters that makes one protocol apparently
better than others. The real difficulty is to find a

scheme that guarantees stable (even if not always

best) performance in any condition. High cooper-

ation overheads and poor stability shown by

‘‘pure’’ flat schemes motivate the search for hybrid
solutions.
3. Two-tier architectures for resource discovery

Let us now focus on two-tier architectures for

resource discovery. The key idea behind two-tier

architectures is to provide a lookup mechanism
that can carry out a discovery task over a set of

edge servers without the need to contact every

node in the set. This idea brings the need of a

two-tier organization of the edge servers and we

also need a protocol to take advantage of this

two-tier topology. The idea behind a two-tier

architecture influences both the node topology

organization and the lookup process.

• On the topological side, we first partition the set
of edge servers on the basis of physical charac-

teristics of the node interconnections, by creat-

ing groups of well-connected nodes. Then, we

choose representative edge servers for each

group and we put these representatives all

together, thus creating what we call a represen-

tative subset.

• The lookup process is divided in two steps that
may include a group or a representative subset.

3.1. Two-tier topologies

We consider solutions for resource discovery
based on an architecture where edge servers are

logically organized in a two-tier topology (N = 2)

that uses hybrid cooperation protocols combining

query- and summary-based schemes.

The choice of a two-tier scheme derives from

the observation that typically ISPs deploy caches

at the points of presence (POPs), and corporate

networks deploy caches within each of their loca-
tions. Moving the lookup process beyond N > 2

has been demonstrated not to be convenient

because more than two steps tend to lengthen the



Fig. 1. Example of a two-tier architecture: groups and repre-

sentative subsets.
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response time [18], thus making often convenient

to get the resource from the origin Web server.

To describe the two-tier logical organization, let

us take as example the nine edge servers in Fig. 1.
A group is a subset of ‘‘well connected’’ edge

servers in terms of distance and network connec-

tivity. The connectivity requirements for WAN

network applications subject to variable traffic

conditions are still open problems, although there

are studies that demonstrate that routing in the

Internet core tends to be more stable than that ob-

served some years ago [22,23]. Independently of
these issues, we can easily accept any edge server

partition that achieves intra-group connections

with typical lower latency, lower congestion and

higher bandwidth than inter-group connections.

For instance, in Fig. 1, we could define the

following groups: G1 = {A,B,C}, G2 = {G,H, I}

and G3 = {X,Y,Z}.

A representative subset is a subset of edge serv-
ers that includes one representative for each group.

We create representative subsets in order to obtain

an exchange of information only among the repre-

sentatives of each group. That is, we do not want

to have a global information exchange. We already

observed that pure protocols do not follow this ap-

proach: in summary-based cooperation every edge

server must have some knowledge about the con-
tent of the neighbor cooperating nodes, while in

query-based cooperation the query and response

message exchange involves every edge server. The

previous section suggests that a lookup process

involving every edge server leads to poor scalabil-

ity. On the other hand, we can achieve high

scalability by providing a lightweight lookup
mechanism that contacts only a subset of the edge

servers and yet is able to locate resources also on

cooperating nodes that are not directly involved

in the lookup. Since there are multiple nodes in a

group, each of them can be chosen as a representa-
tive for its group. Hence, given a partition of the

nodes in groups we may have one or multiple rep-

resentative subsets. For instance, in Fig. 1, we de-

fine two representative subsets at the same time:

RS1 = {A,G,X}, RS2 = {C, I,Z}.

3.2. Cooperation protocols for two-tier topologies

Two-tier architectures allow us to split the

cooperative resource lookup process in two sepa-

rate phases called lookup tiers. In this way, the first

attempt is done by contacting only a few servers,

thus bringing a small overhead on the network.

Then, only if it is necessary, other edge servers

are contacted as well. In any case, we want to

avoid the need of contacting each cooperating ser-
ver, because this would lead to poor scalability. In-

stead, we introduce a new way of collaboration

among the edge servers, that requires to contact

only the representatives to know whether any edge

server owns the requested resource. Intra-group

cooperation occurs inside a group, while inter-

group cooperation occurs among the groups by

contacting their representatives.
Many protocols can be used as first-tier and/or

second-tier lookup protocols, such as query-based

and summary-based. A summary-based protocol

exchanges small amounts of traffic for cooperation

and guarantees low latency times for lookup (just a

search in a table in main memory), but we have

verified that its cache hit rates are highly sensitive

to network and workload characteristics. On the
other hand, a query-based protocol requires larger

amounts of traffic for cooperation and has higher

latency times, but its cache hit rates are high and

typically more stable for different workloads.

If we consider protocols that combine query-

and summary-based mechanisms on a two-tier

topology, it seems useless to apply the same

query-based (or summary-based) protocol for
both first and second tier because it would result

in a ‘‘pure’’ query- (or summary-)based protocol,

that is not of interest for our paper.
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The doubt that we cannot solve through the

previous qualitative considerations is about the

most convenient combination of query- and sum-

mary-based protocols as intra- and inter-group

cooperation protocol. In the next section, we
consider hybrid cooperation schemes that com-

bine in different ways summary- and query-based

protocols.
Fig. 2. Configuration example of a system using InterQ–IntraS

cooperation.
4. Two-tier cooperation protocols

In this section we consider two hybrid protocols
and a variation of both of them: InterQ–IntraS,

InterQ–IntraS-DM and InterS–IntraQ with its

variant. Each protocol name denotes the two

schemes that are used for intra- and inter-group

cooperation. For instance, InterQ–IntraS denotes

the protocol that uses a query-based and a sum-

mary-based schema for inter- and intra-group

cooperation, respectively.
Let us introduce some definitions we will use

throughout the paper. A client request reaching

an edge server of a two-tier cooperative architec-

ture may experiment different effects. It may result

in a local hit when a valid copy of the requested re-

source is found in the first contacted edge server:

the resource is sent to the client and no coopera-

tion is activated. Otherwise, a first-tier hit occurs
when the requested resource is found in an edge

server by means of the first-tier lookup. A global

hit occurs, after a first-tier miss, when the resource

is found in an edge server by means of both tiers of

cooperation. Finally, we have a global miss, if the

resource must be retrieved from the origin Web

server, because both lookup tiers fail in finding a

valid copy of the resource in any edge server.

4.1. InterQ–IntraS cooperation protocol

The InterQ–IntraS scheme uses a summary-

based protocol based on Cache Digests [9] for in-

tra-group cooperation (the ‘‘Summary’’ part), that

is inside a group, and a query-based cooperation

protocol for inter-group cooperation (the ‘‘Query’’
part), that is when contacting the representative

nodes. The main advantage of this scheme is that

any edge server is informed about the content of
all the cooperating edge servers of the same
group. Hence, it seems convenient to limit the

query-based cooperation on the second tier to

one representative server for each group, called

group master. Typically, we select the edge server

offering superior computing power and better con-

nections to the other groups to act as a master.

Masters are edge servers that can be directly con-

tacted by clients, as well as the other edge servers.
To describe this protocol we consider the example

of the architecture shown in Fig. 2.

Let G1 denote the group {A,B,C}, G2 the group

{G,H, I} and G3 the group {X,Y,Z}. The three

nodes {C, I,Z} compose the representative subset

in which the second-tier lookup is carried out

through a query-based protocol. To better evi-

dence the group masters, we have added the labels
M1, M2 and M3 to the nodes C, I and Z, respec-

tively. As you can imagine, there are only two

scenarios:

1. A client requests a resource by contacting a

non-master server.

2. A client requests a resource by contacting a

master server.

The former scenario is described in Fig. 3(a).

The client issues an HTTP request (step 1) for a gi-

ven resource to a non-master server, for instance A

in Fig. 3(a). A searches in its own cache. If it finds

the requested resource, it sends the copy to the cli-

ent. This phase does not require the activation of

any cooperation scheme. If A does not find a valid
copy of the resource in its cache, then the first-tier

lookup is activated (step 2): A looks up the digests

to examine the content of the other edge servers



(a) (b)

Fig. 3. InterQ–IntraS cooperation. A client requests resources to a non-master server (a), or to a master server (b).
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belonging to its group. If A discovers the requested
resource in B, then A sets up a TCP/IP connection

with B to retrieve it (step 3). If the download is

successful, A forwards the resource to the client

(step 4). If B cannot return the resource or if the

resource cannot be found in any edge server

belonging to the A group, A activates the sec-

ond-tier lookup (step 5) by sending a query to its

own master (M1 in Fig. 3(a)). In its turn,M1 sends
an ICP query (step 6) to each of the other masters

(M2 and M3 in Fig. 3(a)). The masters look up in

their digests (step 7) and answer (step 8) to the

requesting master (M1) whether the resource can

be found in any edge server belonging to their

group. Let us suppose, for instance, that M3 an-

swers with a miss message, indicating none of its

group edge servers owns a copy. On the other
hand, M2 answers with a hit message, indicating

that an edge server (e.g., H in Fig. 3(a)) owns a va-

lid copy of the requested resource. Then M1 sends

a message to A (step 9) containing the address of

the server which resulted in a hit. A sets up an

HTTP connection with H (step 10) to download

the requested resource. If the resource retrieval is

successful, A forwards it to the client (step 11),
otherwise A contacts the origin Web server (step

12) and then forwards the resource to the client

(step 13).

The scenario where a client requests a resource

directly to a master server (e.g.M1) is described in

Fig. 3(b). In this case, M1 looks up in its cache

(step 1) a valid copy of the resource. If there is a

miss in the local cache, M1 uses the digest search
algorithm of its group to look for possible remote

hits (step 2). Two possibilities exist:
1. There is a possible hit in its group, for instance
in B. Then M1 sets up a TCP/IP connection

with B (step 3); it fetches the resource and for-

wards it to the client (step 4).

2. There is no hit in its group. The master sends an

ICP query to the nearest masters (step 5). The

successive behavior is similar to that described

in the previous scenario (Fig. 3(a)) from step 7

to step 13, keeping in mind that in Fig. 3(b)
the corresponding steps are numbered from 6

to 12.

4.1.1. A variant of the InterQ–IntraS protocol

The previous InterQ–IntraS scheme can achieve

high cache hit rates, but it places a significant

amount of work on the group masters. Each of
them has to serve client requests and, at the same

time, has to act as a gateway for query-based

cooperation. Especially when masters do not have

computational capacity higher than that of the

other edge servers, the twofold role of edge and

master server can easily congest these nodes and

lead the entire cooperation system to perform

poorly.
To address this bottleneck issue, we propose the

idea of using dedicated masters that do not act as

edge servers. This approach denotes a different

cooperation architecture, called InterQ–IntraS-

DM, that works similarly to the previous InterQ–

IntraS scheme. The main difference is that now

each master acts as a gateway for its group and

as a directory for the other groups, but it cannot
be directly contacted by clients. The limited con-

gestion in master nodes is done at the expenses
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of a reduced number of edge servers available for

client service.

4.2. InterS–IntraQ cooperation protocol

The motivation for the InterS–IntraQ scheme

comes from the observation that in the InterQ–In-

traS schemes the large majority of traffic for coop-

eration (due to ICP messages) transits through the

inter-group links, that are potentially slower and

more expensive (for ISPs) than intra-group links.

The idea behind InterS–IntraQ is to achieve a two-

fold effect: inter-group cooperation through Cache
Digests that generates a minor traffic; intra-group

cooperation, where nodes are connected through

faster and less expensive links, based on an en-

hanced version of ICP messages. As a further po-

sitive effect of the InterS–IntraQ scheme, we can

indicate that it bypasses the bottleneck related to

the masters, and it can achieve a better load bal-

ancing because it uses multiple representatives of
each group for the requests.

Fig. 4 shows an example of this cooperation

scheme by considering the same architecture

shown in Fig. 2. The three groups are G1 = {A,

B,C}, G2 = {G,H, I}, and G3 = {X,Y,Z}. We also

define the following representative subsets for sum-

mary-based cooperation: RS1 = {C, I,Z}, RS2 =

{A,H,Y} and RS3 = {B,G,X}. Each representa-
tive subset must contain at least one member of

each group. In this version of InterS–IntraQ coop-

eration protocol, we require that the groups Gi and

the representative subsets RSi denote a partition of

the initial set of nodes. This leads to the conclusion
Fig. 4. InterS–IntraQ architecture.
that the maximum number of representative sub-

sets is equal to the minimum cardinality of the

groups. Additionally, the minimum number of

nodes inside a representative subset RSi is equal

to the number of groups in the system, because
at least a member of each group must belong to

a representative subset.

We describe this cooperation scheme by refer-

ring to Fig. 5. When an edge server receives an

HTTP request from a client (step 1), it first

searches in its local cache (step 2). If the requested

resource is present, it is forwarded to the client

(step 3), otherwise the first-tier lookup is activated.
The edge server analyzes the digests of the nodes

belonging to its representative subset (step 4). If

any of the first-tier cooperating nodes owns the re-

source (e.g., I in Fig. 5), then the server fetches it

(step 5) and forwards it to the client (step 6). On

the other hand, if the first-tier lookup comes out

as a first-tier miss, then the second-tier lookup is

activated and ICP queries are sent to the group
nodes (step 7). It is important to observe that these

nodes do not answer only for the content of their

caches. Since they also know the digests of their

representative subset nodes (step 8), every node

can answer for its whole representative subset (step

9). For example, A in Fig. 5 answers for itself, for

H and for Y. If any of the cooperating nodes owns

the resource, the edge server activates an HTTP
Fig. 5. InterS–IntraQ cooperation protocol: answer to an

HTTP query from a client.



Fig. 6. Comparison between the InterS–IntraQ protocol and its

variant.
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connection (step 10) to fetch it and forwards it to

the client (step 11). Otherwise, if no node has the

resource, or it cannot be retrieved, then the edge

server reaches the origin Web server (step 12),

fetches the requested resource and forwards it to
the client (step 13).

4.2.1. A variant of the InterS–IntraQ cooperation

protocol

A possible variant of the InterS–IntraQ scheme

comes from the observation that the first-tier sum-

mary-based cooperation is activated among the

‘‘far’’ servers of a representative subset through a
Cache Digest lookup, while, if necessary, ICP que-

ries are sent to the ‘‘near’’ edge servers belonging

to the group of the contacted server.

We may think to an alternative protocol that

first looks for the resource in the nearby edge serv-

ers through ICP, and then in the far servers

through a Cache Digest lookup. The convenience

of this variant with respect to the InterS–IntraQ
protocol comes from the observation that when a

resource is present in both a far and a near edge

server, it is fetched from the closer node.

The InterS–IntraQ protocol and its variant

have the same response time in the case of local

hit because no cooperation is activated, and in

the case of local and group miss, because the re-

source has to be retrieved from a far edge server
and it does not matter whether the Cache Digest

lookup occurs before or after the ICP queries.

The two protocols have different response times

when there is a hit in the representative subset

and in the group of the contacted edge server, be-

cause the InterS–IntraQ protocol fetches the re-

source from far servers, after a Cache Digest

lookup, while the variant fetches the resource from
near servers, after an ICP query.

We do not implement this variant because from

our data we found that there are few cases when a

valid resource is both in a near group and in a far

representative subset. Moreover, the response

times depend on many parameters and it is unclear

whether it is convenient to pursue a reduction of

the lookup time (InterS–IntraQ) or of the fetch
time (variant). We carried out a sensitivity analysis

to evaluate the trade-offs between the InterS–In-

traQ protocol and its variant. Fig. 6 denotes the
boundaries of the region where the InterS–IntraQ
protocol performs better than its variant. In the re-

gions below the curves the InterS–IntraQ protocol

performs better than the variant, but there are

many parameters to be considered: the resource

size (in logarithmic scale), the ICP lookup time,

the average network bandwidth among the edge

servers, the probability of having a valid copy of

the resource in a near and far edge server (in
Fig. 6, this probability is set to 0.1, that is a value

much higher than our observed average values).

From this figure we have that the variant of the In-

terS–IntraQ protocol prevails when the resource is

very large (above 500 KB), almost independently

of the other parameters. On the other hand, good

connections among the edge servers, long ICP

lookup times, low probabilities (below 0.1) of find-
ing the same resource in near and far servers tend

to increase the region where InterS–IntraQ is pref-

erable to its variant.

Under the observation that from our data and

real traces the resource size of the majority of the

requests is of a few kilobytes and the hypothesis

that the bandwidth among the edge servers is not

so narrow even if they are ‘‘far’’, nowadays it
seems more convenient to limit the lookup time

through the Cache Digest scheme, as done by the

InterS–IntraQ protocol. If in the future the aver-

age resource size increases more than the network

bandwidth, it will be more convenient to adopt the

variant of the InterS–IntraQ protocol.
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5. Workload models for performance evaluation

The difficulty of defining a ‘‘typical’’ workload

model is a well known issue, because studies on

real traces show great differences. For the experi-
ments, we prefer to use two synthetic workload

models generated by Web-Polygraph version 2.5

[24]. They intend to capture two ‘‘realistic’’ Inter-

net scenarios, that are based on the model pro-

posed for the second cache-off by IRCACHE [1].

The basic workload is characterized by a high

recurrence (that is, the probability that a resource

is requested more than once), and small inter-arri-
val times for client requests. This latter character-

istic contributes to degrade summary-based

cooperation because of capacity and consistency

misses, as observed in Section 2. We can anticipate

that the chosen workload models tend to penalize

the summary-based protocol with respect to

query-based cooperation. Nevertheless, for a more

than fair comparison with the ‘‘pure’’ query-based
protocols, in this paper we prefer to report results

of a worst-case scenario for first-tier lookup, that

is always based on a summary-based protocol.

Every experiment was done twice and data mea-

sures were collected only in the second run, so to

emulate a steady state scenario. It is worth to ob-

serve that an increment of the number of edge

servers augments the global cache capacity, but
also the size of the working set, because the num-

ber of clients is incremented proportionally. Preli-

minary tests, that we do not report here for space

limitations, were done to tune some parameters of

Squid. For example, for summary-based coopera-

tion we find more convenient to use a digest re-

build period of 60 s to reduce the consistency

miss effects due to frequent cache object replace-
ments (note that the Squid default value is 60 min).

Workload 1 represents a set of heterogeneous

users with different interests. This characteristic,

together with the document popularity model,

leads to a high spatial locality. Client requests also

show some temporal locality, so that only 30% of

the workload is active at a given time. Requests are

referred to a mix of content types consisting of
images (65%), HTML documents (15%), binary

data (0.5%), others (19.5%). The workload model

defines a set of hot resources (1% of the working
set) that receive about 10% of the requests. The

heterogeneity of the user interests is represented

by the fact that only 50% of the requests is taken

from a ‘‘public’’ set of pages common to all clients,

while the remaining 50% is taken from a ‘‘private’’
set, different for each client. Each client is config-

ured to visit more than once only 80% of the

URLs and the object cacheability is 80%. HTML

resources typically contain embedded objects.

Workload 2 is a modified version of Workload

1, where the client population is more homoge-

neous. Here, clients share the same interests, so

spatial locality is reduced, while the overall access
locality is augmented. Moreover, the popularity

model is chosen so to increase the size of the hot

fraction of the workload. This workload takes less

advantage from local cache hit rates and puts more

pressure on cooperation. The modified main

parameters of Workload 1 are indicated below.

The hot set of the workload is larger (15% of the

access are referred to a hot set corresponding to
5% of the URL-space). This creates a popularity

distribution with a heavier tail. The working set

size keeps growing through the whole experiment

(there is no temporal locality). The public fraction

of requests is 100%, which means that every docu-

ment in the workload is public, so that each

resource can be requested by any client.
6. Performance evaluation of hybrid cooperation

schemes

The InterQ–IntraS, InterS–IntraQ and InterQ–

IntraS-DM cooperation architectures are imple-

mented as modifications of the Squid 2.4 software

[12]. All prototypes were extensively tested to ver-
ify their scalability and to compare the stability of

their performance with that of the ‘‘pure’’ query-

based and summary-based protocols. The first set

of experiments, carried out with edge servers

placed on the same network segment, focuses on

cache hit rates, cooperation overheads, and sensi-

tivity to other parameters, such as cache capacity

and workload models. The InterQ–IntraS-DM
scheme was not tested in this context because mea-

suring response times and congestion (the main is-

sues addressed by this cooperation scheme) would
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be meaningless in a LAN. With a second set of

experiments we measure the response times of cli-

ent requests in a geographic scenario. This is to

guarantee that the stability of hybrid schemes on

cooperation overhead and cache hit rates are not
achieved at the expenses of user response time.

These experiments also include the InterQ–In-

traS-DM cooperation protocol.

6.1. Scalability of the cooperation protocols

In Section 2 we have observed that ‘‘pure’’

cooperation protocols do not scale well over a lim-
ited number of cooperating edge servers: traffic

overheads and poor cache hit rates limit query-

based and summary-based protocols, respectively.

In this section, we aim to verify whether hybrid

cooperation protocols based on a two-tier topol-

ogy may provide better scalability and more stable

performance than ‘‘pure’’ protocols do. Moreover,

we are interested in finding which is the best hybrid
scheme among the protocols proposed in this pa-

per. To this purpose, we compare cache hit rates
Table 1

Cache hit rates and overheads for Workload 2

Number

of nodes

Local

HR (%)

First-tier

HR (%)

Global

HR (%)

Intra-group

overhead per

request [bytes/req.]

In

o

re

InterS–IntraQ

8 38.38 45.69 60.16 284.25

15 25.89 37.87 55.66 427.38 1

30 15.13 30.42 51.04 543.05 4

InterQ–IntraS

8 41.00 52.50 60.13 62.05 4

15 23.63 36.16 60.96 83.40 11

30 13.49 26.71 60.26 116.61 24

Cache Digest

8 38.00 53.05

15 26.92 n/a 44.29 n/a n

30 16.28 33.77

ICP

8 40.54 66.49

15 27.07 n/a 66.15 n/a n

30 16.19 65.20

No-Cooperation

8 49.64 49.64

15 27.84 n/a 27.84 n/a n

30 16.35 16.35
and cooperation overheads for an architecture

with an increasing number of edge servers that

are subject to Workload 1 and Workload 2. As a

comparison testbed, we also include results for

an architecture with the same number of nodes
that do not cooperate for document discovery

(namely, No-Cooperation).

Tables 1 and 2 summarize the results regarding

Workload 2 and 1, respectively. In each table, the

first column reports the number of cooperating

nodes, the following three columns report the

cache hit rates (local, first-tier and global), while

the last four columns report the traffic overhead
due to cooperation, that is indicated as additional

bytes exchanged for each client request.

Actually, the most interesting results to evaluate

the cooperation schemes are obtained for Work-

load 2. Hence, we derive the main conclusions

from these experiments and use the results ob-

tained with Workload 1 to confirm these results

or show some light differences. We have already
observed that increasing the number of edge serv-

ers leads to an increment of the working set size
ter-group

verhead per

quest [bytes/req.]

Total overhead

per request

[bytes/req.]

Relative overhead

per node [bytes/req.]

7.32 291.58 36.44

8.10 445.48 29.70

9.10 642.14 21.40

1.67 104.72 13.09

8.87 202.36 13.49

9.58 366.19 12.21

5.70 0.71

/a 6.32 0.42

6.84 0.23

780.84 97.60

/a 1882.64 125.51

4500.42 150.14

/a n/a n/a



Table 2

Cache hit rates and overheads for Workload 1

Number

of nodes

Local

HR (%)

First-tier

HR (%)

Global

HR (%)

Intra-group

overhead per

request [bytes/req.]

Inter-group

overhead per

request [bytes/req.]

Total overhead

per request

[bytes/req.]

Relative overhead

per node

[bytes/req.]

InterS–IntraQ

8 55.01 57.60 63.84 332.15 7.14 339.29 42.41

15 39.81 43.82 52.55 317.66 10.88 328.54 21.90

30 35.80 44.11 54.38 427.40 24.46 451.86 15.06

InterQ–IntraS

8 48.24 55.40 62.56 70.44 82.84 153.28 19.16

15 40.77 50.53 63.62 65.54 95.09 160.64 10.71

30 31.65 55.12 64.06 88.37 192.83 281.20 9.37

Cache Digest

8 31.47 40.25 3.67 0.46

15 30.52 n/a 37.82 n/a n/a 5.11 0.34

30 29.14 37.80 5.48 0.18

ICP

8 57.22 69.46 532.72 66.59

15 52.16 n/a 68.24 n/a n/a 1238.13 82.54

30 45.12 67.62 2977.00 99.23

No-Cooperation

8 57.30 57.30

15 52.28 n/a 52.28 n/a n/a n/a n/a

30 45.45 45.45
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and a consequent reduction of the percentage of

documents that can be cached in each node. For

example, for Workload 2 these percentages de-

crease from 7.5% to 2% of the working set when

the cooperating nodes pass from 8 to 30. But the

most interesting aspect of the Workload 2 charac-

teristics is that a larger number of nodes leads to a

sensible reduction of the local cache hit rates.
From Table 1 we have that the local cache hit rates

go from about 40% to about 15%. Some differ-

ences dependent on the cooperation scheme were

expected, because an edge server belonging to a

cooperative system receives requests from its cli-

ents and other edge servers. This alters the access

patterns and in practice reduces the document

locality. Indeed, the best local hit rates are ob-
tained by the No-Cooperation scheme that pre-

serves locality at most. The same behavior is

shown in Table 2 referring to Workload 1,

although in this case the local hit rates remain

higher than those observed for Workload 2.

From Table 1 we can observe that the No-

Cooperation scheme is not able to face the reduc-
tion of the local cache hit rates, and also Cache Di-

gest shows many limits especially for higher

numbers of cooperating edge servers. On the other

hand, ICP and the other hybrid cooperation

schemes compensate the effects of the local hit rate

reduction with a stable and always over 50% glo-

bal hit rate. InterQ–IntraS is better than InterS–

IntraQ, but plain ICP is even better. The motiva-
tion for these results is related to the choice of

the workload models that tend to penalize sum-

mary-based cooperation. Indeed, an increment of

the working set size rises the frequency of object

replacement, thus reducing the accuracy of the ex-

changed cache digests (there is an increment of

capacity and consistency misses). Cache Digests

is particularly sensitive to this and its hit rate
(quite low even with only 8 cooperating nodes) is

further reduced when the working set size aug-

ments. ICP is not affected by the frequency of

cache replacements and this explains its good per-

formance. However, it is remarkable how well the

hybrid schemes are able to address the issues re-

lated to cache replacement even if the peculiarities



504 R. Lancellotti et al. / Computer Networks 49 (2005) 492–511
of the workload model affect their Summary

cooperation component occurring on the first-tier

lookup. In particular, InterQ–IntraS seems the

most stable protocol, because it overcomes the

drawbacks due to the low first-tier lookup rates
by means of great performance on the second-tier

lookup. It is remarkable the case with 30 nodes,

where its cache hit rates pass from 13% to 26%

to 60%, that is the same value observed for lower

numbers of cooperating edge servers. On the other

hand, the InterS–IntraQ scheme finds a minor ben-

efit from the query-based cooperation on the sec-

ond-tier. The consequence is a reduction of the
global cache hit rate of about 15%, that however

remains much better than that of Cache Digests

experiencing a decrease of about 38%.

The results reported in Table 2 related to Work-

load 1 confirm the previous conclusions: InterQ–

IntraS and ICP show the most stable cache hit

rates, followed by InterS–IntraQ and Cache Di-

gest. Now, because of the higher spatial locality
in request patterns, the hit rates are generally

higher than those shown in Table 1. The main con-

tributions to these results are due to the local hit

rate (see No-Cooperation performance), which is

increased by the greater locality caused by the

higher percentage of ‘‘private’’ requests, as ex-

plained in the description of the workload models.

Cooperation tends to reduce locality, and this
motivates the results of Cache Digest that are even

poorer than those of No-Cooperation.

If we include the overheads due to cooperation

in the analysis of scalability and stability, we can

observe some interesting modifications in the rank-

ing of the cooperation schemes. Once again, we

use Workload 2 (Table 1) as a main reference to

explain our conclusions, and report data for
Workload 1 (Table 2) as a comparison testbed.

The last four columns of these tables show cooper-

ation overheads that are measured as the ratio be-

tween the bytes exchanged for cooperation and the

number of client connections (hits and misses) re-

ceived by the edge servers, normalized by the num-

ber of cooperating edge servers in the last column.

As expected, augmenting the number of edge
servers increases the cooperation overhead, but

not every scheme is affected in the same way. In

particular, ICP generates the highest cooperation
traffic even with 8 nodes, and continues to increase

with respect to the number of cooperating edge

servers in a much faster way than any other

schemes do. It is interesting to note that with 30

nodes the ICP cooperation overhead (traffic gener-
ated only to cooperative lookup purposes) reaches

4.5 KB per requests, with an average document

size of about 10 KB. On the other hand, Cache

Digests shows the lowest cooperation overhead.

Hybrid schemes occupy an intermediate posi-

tion, with a cooperation overhead higher than that

of Cache Digest, but significantly lower than that

of ICP. InterQ–IntraS halves the traffic of In-
terS–IntraQ, but the order of magnitude remains

the same. It is more important to observe that

the experimental results confirm the motivation

of the InterS–IntraQ scheme. This approach is

effective in reducing the usage of inter-group net-

work resources, because it offers a summary-like

traffic on the distant and more expensive links,

while it moves more overhead on the intra-group
links. The results observed for Workload 2 are

substantially confirmed by the experiments based

on Workload 1, as shown in the last four columns

of Table 2. To appreciate the stability of the results

of the cooperation schemes, we refer to the last

columns of Tables 1 and 2, showing the overhead

traffic per request relative to each node. It is

important that for larger numbers of cooperating
edge servers, InterQ–IntraS does not show practi-

cal modifications, the relative overheads of InterS–

IntraQ and Cache Digests relative overheads tend

to diminish, whereas continuous increments only

occur for ICP.

6.2. Sensitivity analysis on cache capacity

Studying the sensitivity of the cooperation

schemes with respect to the cache capacity evi-

dences other interesting results, especially for the

hybrid protocols. For these experiments we used

the Workload 1 and only 8 nodes to reduce the

advantages of the better scalability of two-tier

cooperation protocols. The considered cache

capacity per node is equal to 2.5%, 7.5% and
25% of the working set size. As expected, the cache

hit rate of all schemes increases with the cache

capacity. With the highest capacity, InterQ–
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IntraS, InterS–IntraQ and ICP show close perfor-

mance beyond 70%. Even Cache Digest improves
over 50%, but this scheme remains penalized by

the frequent object replacements.

The results related to the cooperation overhead,

reported in Fig. 7, are interesting. Increasing the

cache capacity brings two different effects: the local

hit rate raises, but the digest size grows as well.

The increment in local hit rates reduces the need

of cooperation, hence the overhead related to
query-based cooperation decreases, whereas the

overhead related to summary-based cooperation

tends to augment, because of the larger dimension

of the exchanged digests. The overhead of Cache

Digest remains two orders of magnitude below

that of ICP. Hybrid schemes, combining both

types of cooperation, have the most stable results

with respect to cache capacity modifications.
Fig. 8. Response time (light network load).
6.3. Experiments on a geographic testbed

The last set of experiments was done in a geo-

graphic environment. The main goal is to verify

whether the better scalability and stability of hy-

brid schemes (lower overheads than ICP with sim-

ilar cache hit rates) have a negative influence on
the user response times. We set up two groups of

five nodes each, that were connected through some

links and a geographic backbone. Ten network
hops existed between the groups. We also installed

one Web server in each location. For this test, we

report the results referring to Workload 1, because

they are representative of Workload 2 as well. The

experiments were performed with two different
network conditions.

The first test was carried out on Sunday, with

light network load, while the second test was done

in conditions of heavy network load during a

working day. The observed mean round-trip time

was 50 and 300 ms, in the case of light and heavy

network load, respectively.

We collected the data related to the client re-
quest service times from the Squid logs which

can be used as an estimation for the user response

time. We also monitored the network resource

usage on the worst performing links. The worst,

thus becoming the bottleneck, had a capacity of

2 Mbit/s on one hop.

Figs. 8 and 9 show the cumulative probability

of the response times, for light and heavy network
load, respectively. It is interesting to note the cor-

relation between the cache hit rate and the user re-

sponse time, that leads to the Bernoullian shape of

the curves in Figs. 8 and 9: requests are served very

early or after a large amount of time.

Indeed, there is a big difference between client

requests resulting in a hit (usually served in very

short time) and requests occurring in a global
miss (that usually experience a much higher la-

tency). ICP shows the best response times for hit
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resources, but poorest results in the case of global

misses because it has to wait for the slowest coop-

erating edge server. In Fig. 8 the ICP curve is the

highest at the beginning, but it is surpassed by that

of InterS–IntraQ (around 1.5 s) and becomes the

worst (after 4 s). These effects, even if already

shown by our experiments, became much more

evident in other not reported curves obtained for
a workload model characterized by scarce locality

and consequent lower hit rates. The conclusions

on response times can be better appreciated by

evaluating the 90-percentile of the request service

time instead than looking at the curves that seem

so close. As shown in Table 3, in the case of light

network load, the 90-percentile for ICP is 3.7 s (the

highest value), while for InterS–IntraQ it is 3.2 s
(the lowest value) and for InterQ–IntraS-DM it

is 3.6 s. Cache Digests, because of its low hit rate

tends to be slower in the first part of the curve,

but the 90-percentile of its response time (3.5 s) is

similar to that of the other cooperation protocols.
Table 3

90 percentile of response times in seconds

Protocol Light network

load [s]

Heavy network

load [s]

InterQ–IntraS 3.60 5.19

InterQ–IntraS-DM 3.68 4.43

InterS–IntraQ 3.26 5.63

Cache Digests 3.51 7.30

ICP 3.70 6.23
When the network is affected by heavy traffic

(Fig. 9), congestion can occur in many places of

the architecture. The overall performance of the

cooperative system is reduced: the percentage of

client requests serviced within 100 ms is reduced
from 66–56% to 59–47% depending on the cooper-

ation protocol. Furthermore, the cache hit rate de-

creases (from 68–47% to 61–36%) in conditions of

heavy network load. The differences among the

various hybrid schemes are reduced because the

congestion occurring in the query-based coopera-

tion overpowers the congestion of InterQ–IntraS

protocol. As shown in Table 3 also the 90-percen-
tile of the user response time augments: ICP shows

once again poor performance (6.2 s), far more

than that of the best InterQ–IntraS-DM remaining

below 4.5 s. Cache Digests is the worst coopera-

tion protocol in terms of 90-percentile (7.3 s) when

the network is congested. The motivation is that its

lower hit rate augments the use of congested links

to contact the Web servers. The other hybrid
schemes, InterQ–IntraS and InterS–IntraQ, have

an intermediate result with 90-percentile equal to

5.2 and 5.6 s, respectively.

The InterQ–IntraS scheme, that has shown the

best results in the previous subsections referring

to LAN-based experiments, seems the worst of

the three hybrid schemes in a geographic scenario.

Collecting user response time statistics in a LAN
environment is senseless, while it is very useful in

a WAN environment. That is why we notice the

congestion occurring at the group masters only

in this latter series of experiments. We can see

from Fig. 9 that, when the group masters also

act as edge servers, about 15% of resources are

served after a long time (up to 5 s). This problem

is solved by the InterQ–IntraS-DM variant with
dedicated group masters. Indeed, even with a

smaller number of edge servers, InterQ–IntraS-

DM improves the performance of the hybrid

schemes: in the case of heavy network load, its

90-percentile is equal to 4.4 s, while the corre-

sponding index is equal to 5.2 and 5.6 s for In-

terQ–IntraS and InterS–IntraQ, respectively, as

shown in Table 3. Actually, this bad result for In-
terS–IntraQ is mainly due to its lower cache hit

rate that, like for Cache Digests, is more affected

by the characteristics of the workload considered
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in this experiment. InterQ–IntraS-DM is the best

cooperation protocol in terms of 90 percentile in

the case of a heavy network load. However, it is

worth to observe that especially when the cache

hit rate has a lower impact on response time (as
it is for the case of light network load), InterS–

IntraQ is a valid alternative. Its curve is often over

the others in Fig. 8, and even better than InterQ–

IntraS-DM in some circumstances (see the first

part of Fig. 9). It degrades when its low cache

hit rate influences the percentage of objects that

must be retrieved from the origin Web server.

6.4. Summary of the experimental results

The large set of experiments carried out in this

paper, of which only a significant subset has been

reported here, highlights some interesting results.

• Query-based protocols seem very effective in

resource discovery because their mechanism is
less subject to stale information. However, their

high cache hit rates are affected by cooperation

overheads that grow as the number of cooperat-

ing edge servers increases, and by network traf-

fic especially over distant and congested links.

The tests in a geographic environment have evi-

denced the poor stability of results based on

query mechanisms: they have low response time
in case of hits, but they are much slower than

other protocols in handling misses.

• Summary-based protocols cause negligible

overhead for cooperation, but their cache hit

rates are very sensitive to many workload and

architecture parameters. For example, when

the frequency of client requests is high and/or

there is a frequent object replacement, it is not
convenient to use summary-based protocols

for cooperative discovery. Even in a geographic

environment, their performance is mainly

affected by low hit rates.

• Hybrid protocols achieve intermediate results,
with hit rates close to query-based protocols

(especially for the InterQ–IntraS and InterQ–

IntraS-DM schemes), and overheads growing
much slower than those of query-based proto-

cols as the number of cooperating edge servers

increases. This twofold effect allows us to con-
clude that they have the best potential scala-

bility. Tests in the geographic scenario have

confirmed this hypothesis: two-tier protocols

show good ability in dealing with both hit and

miss objects. Their stable performance in the
highly variable Web scenario is the most impor-

tant achievement of these hybrid schemes.

A final remark is in order about the general

applicability of these results. The two main work-

load models considered in this paper derive from

a careful selection of many other results. They have

been included here because they bring the most
important conclusions and certainly do not favor

hybrid schemes. On the other hand, they tend to

favor query-based cooperation with respect to sum-

mary-based cooperation. Actually, we can say that

different workload characteristics never contrib-

uted to improve ICP performance shown here.

Other workload models can only improve sum-

mary-based performance (e.g., less frequent object
replacements in caches, higher inter-arrival times

for client requests) or deteriorate query-based re-

sults especially for the user response time (e.g.,

lower recurrence of requests leading to reduced lo-

cal hit rates). The real important point is that the

results of the hybrid schemes have been demon-

strated to be more independent of the workload

models, because they can backup the defacement
of a cooperation protocol in the first-tier lookup

with the improvement of the other protocol in

the second-tier lookup.
7. Related work

Cooperative Web caching has been studied for
a long period. Cooperation can be used for differ-

ent goals, but here we are mainly interested to re-

source discovery, retrieval and delivery. The first

idea for cooperation was the use of a hierarchy

based on the physical Internet topology [14]. In

this approach, the phases of discovery and delivery

are simultaneous. However, hierarchical coopera-

tion shows multiple drawbacks especially for the
lookup latency [17], and management issues [25].

Some of the problems of hierarchical caching

can be solved by organizing the edge servers in a
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flat topology. Typically, in this approach the two

actions of discovery and delivery are separated,

as in the systems considered in this paper. Docu-

ment retrieval for delivery is extremely simple

and efficient, by requiring only an HTTP connec-
tion to the selected edge server or to the origin

Web server. On the other hand, discovery can be

performed according to different schemes (namely

distributed lookup schemes). In pure distributed

schemes, the lookup process takes place in one

step and is basically founded on query-based or

directory (summary)-based mechanisms. In our

hybrid distributed schemes, the lookup process
takes place in two separate steps and is founded

on a combination of query-based and summary-

based mechanisms.

ICP [7] is the most popular query-based cooper-

ation protocol and its pros and cons have been

widely studied. The limited scalability of ICP has

been documented in [6] by the author of the proto-

col himself, while its high overhead for coopera-
tion was one of the main motivation for the

proposal of a summary-based scheme, such as

Summary Cache [10]. In [9], Rousskov et al. also

note that ICP is slow in handling misses, thus

motivating the proposal of Cache Digests, another

well known summary-based protocol. Multicast

has been proposed (for example [8] for ICP) to re-

duce cooperation overhead. However, this tech-
nique has serious limits to be applied to a

geographically distributed system, because by

now multicast addresses cannot usually cross the

boundaries of autonomous systems.

In our research we intensively tested these

‘‘pure’’ protocols and found a confirmation of

the fact that they are not scalable and their perfor-

mance are highly dependent on workload and traf-
fic characteristics. ICP because of the high

overheads it puts on the network, Cache Digests

because of its low hit rates.

There are different opinions about the benefits

of cooperative Web caching when applied to a

large scale. Wolman et al. claim that the benefits

are small because the gain in terms of hit rate in-

crease are very small and tend to saturate [13].
On the other hand, Dykes and Robbins in

[26,11] claim that the most important benefits of

Web caching are the reduction of the variability
of user response time and the reduction of the

number of pathologically long delays and this is

more important than the hit rate increase. Our

scalable protocols provide a viable solution to ad-

dress the issues evidenced by Dykes and Robbins,
which were not taken into account in [13].

As ‘‘pure’’ hierarchical and distributed ap-

proaches were found unsuitable for cooperation

over a large scale, hybrid schemes have been pro-

posed. Here, a hierarchical approach is combined

with other forms of cooperation among sibling

edge servers (that is, nodes sharing the same parent

edge server). Hybrid scheme is a quite generic term
that is usually referred to any cooperation mecha-

nism that does not fit in the category of pure

hierarchical and pure distributed cooperation.

However, there are many possible combinations

that derive from the lookup topology and the

cooperative protocol. For example, an all-query-

based scheme is proposed in [27], where traditional

hierarchical caching is integrated with horizontal
query-based cooperation among cooperating edge

servers at the same level of the hierarchy. Tewari

et al. [18] suggest a summary-based hierarchical

approach by means of meta-data that track where

copies of files are stored in the hierarchy. A similar

technique is proposed by Povey et al. [25], where

only the lower level edge servers are responsible

for storing documents, while upper level nodes
maintain information about the contents of the

lower level edge servers. The idea of a multi-step

lookup over sets of different cardinality is related

to the idea of two-step cooperation over a two-tier

architecture proposed in this paper. The main dif-

ference with the results from our contribution is

that the previous proposals rely on one ‘‘pure’’

lookup protocol, that is either query-based or
directory(summary)-based, whereas we propose

various hybrid combinations of ‘‘pure’’ protocols.

CRISP is another hybrid scheme in terms of

protocols, proposed by Rabinovich et al. [28,15].

It combines a centralized directory-based protocol

with a query-based approach. On the other hand,

all the schemes proposed here rely on a distributed

summary-based protocol combined with a distrib-
uted query-based protocol. Indeed, the authors

of CRISP observed that a centralized direc-

tory makes their architecture not scalable over a
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geographic network environment, although they

outlined some alternative solutions for scalability

[29]. In particular, the two-step lookup process

and node clustering choices have some similarities

with our two-tier architecture, and especially with
the InterQ–IntraS-DM scheme. The good perfor-

mance of InterQ–IntraS-DM can be considered a

demonstration of the validity of the ideas con-

tained in [29].

Another important topic related to Web cach-

ing is the definition of measures of quality for

Web caching and cooperative Web caching. Un-

like many other papers that use a limited set of
measures, we consider all the main metrics ap-

peared in literature, such as cache hit rate, re-

sponse time, overhead for cooperation. In all

previous studies, object (or byte) hit rate is the

main metric used to evaluate performance of a

caching architecture. More recently, several

authors have pointed out the importance of con-

sidering other performance metrics. For exam-
ple, Fan et al. [10] introduce network overhead

as a measure for system scalability, and the im-

pact of cooperation on central memory and CPU

usage. However, present architectures do not

seem anymore to represent a bottleneck for edge

servers with the exception of mass storage size for

nodes holding large resources such as video data

[30]. The user response time is another important
measure of cache performance. For example,

Rousskov et al. [9] use this parameter to demon-

strate that Cache Digests is preferable to ICP. In

our paper the user response time is the most

important metric to evaluate the performance

of the hybrid protocols in a geographic environ-

ment.

Finally, we consider important to observe that
our prototype experiments based on Web Poly-

graph [24] allowed us the highest flexibility on

the choices of workload characteristics. We carried

out important sensitivity analysis that are pre-

vented to the large majority of papers based on

trace-driven simulations. Indeed, we are aware of

few sensitivity analysis of cooperative caching per-

formance to workload characteristics. Williamson
et al. focus on traditional proxy caching [31], while

some results on cooperative Web caching are in

[30].
8. Conclusions

Web caching has evolved as the first way to ad-

dress Web server and network resource utilization

issues related to the growth of HTTP requests. The
initial idea of using one edge server shows very low

cache hit rates even in a context of homogeneous

users. Thus, cooperative caching has been intro-

duced to establish interactions among various

cooperating edge servers. We point out the limits

of scalability and stability of ‘‘pure’’ query-based

and summary-based protocols for cooperative re-

source discovery and the strong dependency of
their performance on different workload and

architecture characteristics. We propose, imple-

ment and evaluate three hybrid cooperation mech-

anisms (InterQ–IntraS, InterQ–IntraS-DM and

InterS–IntraQ) that combine in different ways

query-based and summary-based protocols in a

two-tier architecture. The proposed protocols ob-

tain good hit rates and low overheads, without
penalizing the user response times. Their perfor-

mance is particularly stable and quite insensitive

to network conditions. These characteristics let

the proposed protocols scale well even when there

are many cooperating edge servers.
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