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Abstract: Reducing energy consumption in cloud data center is a complex task, where both computation and network
related effects must be taken into account. While existing solutions aim to reduce energy consumption consid-
ering separately computational and communication contributions, limited attention has been devoted to models
integrating both parts. We claim that this lack leads to a sub-optimal management in current cloud data centers,
that will be even more evident in future architectures characterized by Software-Defined Network approaches.
In this paper, we propose a joint computation-plus-communication model for Virtual Machines (VMs) allo-
cation that minimizes energy consumption in a cloud data center. The contribution of the proposed model is
threefold. First, we take into account data traffic exchanges between VMs capturing the heterogeneous con-
nections within the data center network. Second, the energyconsumption due to VMs migrations is modeled
by considering both data transfer and computational overhead. Third, the proposed VMs allocation process
does not rely on weight parameters to combine the two (often conflicting) goals of tightly packing VMs to
minimize the number of powered-on servers and of avoiding anexcessive number of VM migrations. An ex-
tensive set of experiments confirms that our proposal, whichconsiders both computation and communication
energy contributions even in the migration process, outperforms other approaches for VMs allocation in terms
of energy reduction.

1 INTRODUCTION

The problem of reducing the computation-related en-
ergy consumption in a Infrastructure as a Service
(IaaS) cloud data center is typically addressed through
solutions based on server consolidation, which aims
at minimizing the number of turned on physical
servers while satisfying the resource demands of the
active Virtual Machines (VMs) (Beloglazov et al.,
2012; Beloglazov and Buyya, 2012; Canali and Lan-
cellotti, 2015; Mastroianni et al., 2013). How-
ever, these solutions typically are not network-aware,
meaning that they do not consider the impact of data
traffic exchange between the VMs of the cloud infras-
tructure. Neglecting this information is likely to cause
sub-optimal VMs allocation because networks in data
centers tend to consume about 10%-20% of energy in
normal usage, and may account for up to 50% energy
during low loads (Greenberg et al., 2008). Further-
more, few studies proposing solutions for VMs allo-
cation consider the contribution of VMs migration to
energy consumption, both in terms of computational

and network costs. For example, the network-aware
model for VMs allocation proposed in (Huang et al.,
2012) does not consider at all the costs of VMs mi-
gration: the VMs allocation for the whole data cen-
ter is re-computed from scratch every time the model
is solved. On the other hand, when VMs migration
costs are taken into account, they are usually mod-
eled in a quite straightforward way as in (Marotta and
Avallone, 2015): the allocation model simply takes
into account the number of VMs migrations, and re-
lies on parameters (weights) to address the trade-off
of minimizing both the number of turned on physical
servers and of expensive VMs migrations required for
the server consolidation.

These limitations are clearly visible in modern
data centers, but will be even more critical in future
architectures that join virtualization of computation
and communication functions, merging virtual ma-
chines, network virtualization and software-defined
networks (SDDC-Market, 2016). In such software-
defined data centers, the support for more flexible net-
work reconfiguration allows the migration of both vir-



tual machine and communication channels and vir-
tualized network apparatus (Drutskoy et al., 2013).
Hence, traditional VMs allocation policies, that are
network blind or adopt simplified models for migra-
tion, will be inadequate to future cloud architectures.

The main contribution of this paper is the proposal
of a novel solution to minimize energy consumption
in present and future cloud data centers through a
computation- and network-aware VMs allocation that
also takes into account a detailed model of the energy
contributions related to the VMs migration process.
The proposed optimization model for VMs allocation
aims not only to reduce as much as possible the num-
ber of turned on servers, but also to minimize the en-
ergy consumption due to the exchange of data traffic
between VMs over the data center infrastructure. The
VM migration process is modeled to consider both the
computational overhead and VM data transfer contri-
butions to energy consumption. Our model exploits
a dynamic programming approach where the previ-
ous VMs allocation is taken into account to compute
the future allocation solution: no external parame-
ters or weights are taken into account to combine the
two (often conflicting) goals to reduce the number of
powered-on servers and limit the number of VMs mi-
grations.

We evaluate the performance of the proposed
model through a set of experiments based on two sce-
narios characterized by different network traffic ex-
changes between the VMs of the cloud data center.
The results demonstrate how the proposed solution
outperforms approaches that do not consider network-
aware costs related to data transfer and/or apply sim-
plified models for VMs migration to reduce the en-
ergy consumption in cloud data centers. Moreover,
we show that our optimization model allows to limit
the number of VM migrations, thus achieving more
stable energy consumption over time and leading to
major global energy saving if compared with other
existing approaches.

The remainder of this paper is organized as fol-
lows. Section 2 describes the reference scenario for
our proposal, while Section 3 describes our model for
solving the VMs allocation problem. Section 4 de-
scribes the experimental results used to validate our
model. Finally, Section 5 discusses the related work
and Section 6 concludes the paper with some final re-
marks and outlines open research problems.

2 REFERENCE SCENARIO

In this section we describe the reference scenario for
our proposal. Starting from this scenario, we illustrate

the characteristics of the proposed model for energy-
efficient management of a cloud data center, focus-
ing on the operations that decide the allocation of the
VMs over the physical servers of the infrastructure.

Figure 1 presents the general schema of a net-
worked cloud data center: this schema is suitable to
describe both a traditional (currently used) data center
and a future data center that rely on software-defined
or virtualized network infrastructure. While describ-
ing how the proposed solution can be integrated in
a traditional infrastructure, we outline that it can be
easily applied also to these future software-defined
data centers, taking advantage of their characteris-
tics to improve the scalability and performance of the
energy-efficient management.

The considered networked data center is based on
the Infrastructure as a Service (IaaS) paradigm, where
VMs can be deployed and destroyed at any time by
cloud customers, while active VMs may be migrated
from one server to another one according to the data
center management strategies. The VMs are hosted
on physical servers, which are grouped into racks.
The data center is based on a two-level network ar-
chitecture, withTop-of-Rack (ToR) switchesconnect-
ing the servers of the same rack, and an upper layer of
networking (data center core network) that manages
the communication among multiple racks of servers.
This structure implies two different costs for transfer-
ring data between servers belonging to the same rack
(passing through the ToR switch) to different racks
(passing through the data center core network).

The utilization of the network is collected by the
network managercomponent (in the top-right part of
the Fig. 1). In a traditional data center this compo-
nent is typically dedicated to monitoring functions
and VLANs reconfigurations. On the other hand, in a
software-defined data center the network manager im-
plements the network control logic (the control plane)
for the whole infrastructure, while the actual data col-
lection is implemented at the level of the data plane
(for example through counters defined in the Open
Flow1 tables inserted in every network element). It is
worth to note that the approach adopted by a software-
defined data center makes inherently scalable the op-
erations of network monitoring, differently from what
happens in traditional data centers. In both present
and future data centers, the information about the net-
work utilization is given as input to thedecision man-
ager of the data center, which is receiving also the
monitoring information about the utilization of other
VMs resources (e.g. CPU and memory). All the in-
formation is collected at the level of the hypervisors
located on each physical server; even this process of

1http://archive.openflow.org/wp/learnmore/



data collection may be scalable if the system adopts a
monitoring mechanism based on classes of VMs that
have similar behavior in terms of resource utilization.
An example of monitoring solution based on this ap-
proach is described in (Canali and Lancellotti, 2012).

The allocation manager– on the right side of
Fig. 1 – is the data center component responsible
for running the model for VMs allocation that deter-
mines the optimal placement of VMs on the physi-
cal servers to minimize the global energy consump-
tion. After achieving a solution, the allocation man-
ager notifies the servers of the VMs migrations that
need to be applied (the communication related to the
decisions are marked as dashed lines in the Fig. 1). It
is worth to note that in the case of a software-defined
data center, traffic engineering techniques are typi-
cally applied (Akyildiz et al., 2016). These techniques
make possible to perform the data transferring due to
the VMs migration (that is, the actual transfer of the
VM memory size from the source to the destination
server) without affecting the performance of normal
(application-related) network traffic. This is another
reason that makes the integration of complex resource
management policies in a software-defined architec-
ture easy and convenient.

We recall that the allocation manager operates by
planning VMs migrations across the infrastructure to
accomplish the goal of minimizing the energy con-
sumption of the cloud data center in terms of both
computational and network contributions. It is worth
to note that many solutions for energy-aware VMs al-
location are based on reactive approaches, which rely
on events to trigger the VM migrations (Beloglazov
et al., 2012; Marotta and Avallone, 2015; Mastroianni
et al., 2013). On the other hand, we consider an ap-
proach based on time intervals, where a control of
the optimality of the VMs allocation on the physical
servers is periodically performed. The main reason
for this choice is that, while for CPU utilization it is
feasible and easy to define events (typically based on
thresholds) to trigger migrations, for network-related
energy costs it is much more difficult to define similar
triggers. The details of the optimization model pro-
posed to reduce energy consumption in the networked
cloud data center are described in the next section.

3 PROBLEM MODEL

We now introduce the model used to describe the
VMs allocation problem that we aim to address in our
paper. We recall that the final goal is to optimize the
VMs allocation on the data center physical servers in
order to reduce the energy consumption due to both

the computational and networking processes, includ-
ing the contributions of VMs migrations, while sat-
isfying the requirements in terms of system resources
(that is CPU power, memory, bandwidth) of each VM.
We recall that the energy model for VMs migration is
an original and qualifying point of our proposal.

3.1 Model Overview

We consider a set of serversM , where each serveri
hosts multiple VMs. Each VMj ∈ N has require-
ments in terms of CPU powerc j , memorymj and
network bandwidth (that we model through the data
exchanged between each couple of VMsd j1, j2). We
assume that the respect of SLA is guaranteed if and
only if the VM has its required CPU/memory/network
resources (as in (Beloglazov et al., 2012), although
in this paper only CPU is considered for the SLA).
This SLA is suitable for an Infrastructure as a Service
(IaaS) scenario.

Another important point of our model is that time
is described as a discrete succession of intervals of
length T , differently from other approaches which
rely on a reactive model based on events (such as CPU
utilization exceeding a given threshold (Beloglazov
et al., 2012; Marotta and Avallone, 2015; Mastroianni
et al., 2013)). In our model we consider a generic
time intervalt, to which VMs resource demands are
referred, and we assume to know the situation of the
VMs allocation in the data center during the previ-
ous time intervalt −1. Knowledge of previous VMs
allocation is required in order to support a dynamic
programming approach. The VMs demands for CPU,
memory and network during future time slots can
be predicted by taking advantage from recurring re-
source demand patterns within the data centers, such
as the cyclo-stationary diurnal patterns typically ex-
hibited by the VMs network traffic (Eramo et al.,
2016). Whenever a new VM enters the system dur-
ing the time intervalt, we place it on the infrastruc-
ture using an algorithm such as the Modified Best Fit
Decreasing (MBFD) described in (Beloglazov et al.,
2012). For the new VM we assume to have no clear
information about its communication with other VMs
and about its resource demands, so we can discard
inter-VMs communication costs and we use the nom-
inal values for its resource requirements.

We now describe the optimization model. Ta-
ble 1 contains the explanation of the main decision
variables, model parameters and model internal vari-
ables used to describe the considered problem. In
our approach, VMs migration represents a way to
achieve not only the server consolidation, but also
the optimization of the energy consumption due to
data transfer between communicating VMs. Similarly



Figure 1: Networked Cloud Data Center.

to (Marotta and Avallone, 2015), migrations are mod-
eled using two matrices, whose elementsg−i, j(t) and
g+i, j(t) represent the source and destination of a mi-
gration (withi being the server andj the VM).

Finally, the decision variables of our problem are:
an allocation binary matrix, whose elementsxi, j(t)
describe the allocation of VMj on serveri, and a bi-
nary vector whose elementsOi(t) represent the status
(ON or OFF) of the physical serveri. It is worth to
note that the allocation matrix at timet −1 represent
the actual system status at theendof the intervalt−1,
meaning that we remove and add the VMs that left
and joined the system during the intervalt −1.

In the following, we detail the optimization prob-
lem that defines the VMs allocation for time interval
t.

3.2 Optimization Formal Model

The formal model of our optimization problem can be
described as follows.

min ∑
i∈M

ECi (t)+ED(t)+ ∑
j∈N

EM j (t) (1.1)

subject to:

∑
j∈N

xi, j(t)c j(t)≤ cm
i O(t) ∀i ∈ M , (1.2)

∑
j1∈N

∑
j2∈N

(

xi, j1(t)+ xi, j2(t)−2xi, j1(t)xi, j2(t)
)

d j1, j2(t)≤

≤ dm
i O(t), ∀i ∈ M , (1.3)

∑
j∈N

xi, j(t)mj(t)≤ mm
i O(t), ∀i ∈ M , (1.4)

∑
i∈M

xi, j(t) = 1, ∀ j ∈ N , (1.5)

∑
i∈M

g+i, j(t) = ∑
i∈M

g−i, j(t)≤ 1, ∀ j ∈ N , (1.6)

g−i, j(t)≤ xi, j(t −1), ∀ j ∈ N , i ∈ M , (1.7)

g+i, j(t)≤ xi, j(t), ∀ j ∈ N , i ∈ M , (1.8)

xi, j(t) = xi, j(t −1)−g−i, j(t)+g+i, j(t), ∀ j ∈ N , i ∈ M ,

(1.9)

xi, j(t),g
+
i, j(t),g

−
i, j(t),Oi(t) = {0,1}, ∀ j ∈ N , i ∈ M ,

(1.10)

We now discuss the optimization model in de-
tails, staring from the analysis of its objective function
(1.1). The VMs allocation process aims to minimize
the three main contributions to energy consumption,



Table 1: Notation.

Symbol Meaning/Role

Decision variables

xi, j(t) Allocation of VM j on serveri at timet
Oi(t) Status (ON or OFF) of serveri

Model parameters

xi, j(t −1) Allocation of VM j on serveri at timet −1
T Duration of a time interval
N Set of existing VMs to deploy|N |= N
M Set of on servers in the data center|M |= M
c j(t) Computational demand of VMj at timet
d j1, j2(t) Data transfer rate between VMj1 and j2 at timet
mj(t) Memory requirement demand of VMj at timet
cm

i Maximum computational resources of serveri
dm

i Maximum data rate manageable by serveri
Edi1,i2

Energy consumption for transferring 1 data unit
from i1 to i2

mm
i Maximum memory of serveri

Pm
i Maximum power consumption of serveri

Pd
i Power consumption related to the ”on” status

of network connection of serveri
KCi Ratio between maximum and idle power

consumption of serveri
KMi Computational overhead when serveri

is involved in a migration

Model variables

i Index of a server
j Index of a VM
ECi (t) Energy for serveri at timet
ED(t) Energy for data transfer for serveri at timet
EM j (t) Energy for migration of VMj time t
g−i, j(t) 1 if VM j migratesfrom serveri time t
g+i, j(t) 1 if VM j migratesto serveri at timet

that are:Computational demand, Data transfer, and
VM migration.

The Computational demandenergy consumption
is defined for a generic serveri. Its energy consump-
tion is modeled as the sum of two components (as
in (Beloglazov et al., 2012)). The first component is
the fixed energy cost when the server is ON (power
consumption for an idle server isPm

i KCi ). The second
component is a variable cost that is linearly propor-
tional to the server utilization, so that the server power
consumption isPm

i when the server is fully utilized.
The utilization of a server is obtained using the com-
putational demands of the VMs hosted on that server
c j(t) and the maximum server capacity (cm

i ). The
computational demand component can be expressed
as:

ECi (t) = Oi(t)T Pm
i

(

KCi +(1−KCi)
∑ j∈N xi, j(t)c j(t)

cm
i

)

TheData transferis a data center-wise value that
corresponds again to the sum of two components,
consistently with the model proposed in (Chiaraviglio

et al., 2013). The first component is the power con-
sumption of the idle but turned on network interfaces
on the server (defined asPd

i for serveri). The second
component is proportional to the amount of data ex-
changed (based on the parameterd j1, j2 that describes
the data exchange between two VMsj1 and j2). It is
worth to note that we consider a linear energy model
also for the network data transfer, according to (Bel-
oglazov et al., 2012; Chiaraviglio et al., 2013; Eramo
et al., 2016). This model is viable for current data
centers and will be even more suitable for future data
centers with virtualized and software-defined network
functions, where network functions can be considered
as abstract computation elements (Drutskoy et al.,
2013).

Furthermore, we point out that the matrixEdi1,i2
is

a square matrix which describes the cost to exchange
a unit of data among two different servers and can
capture the characteristics of any topology of the data
center network in a straightforward way. The global
energy cost of data transfer is thus described as:

ED(t) = ∑
i∈M

Oi(t)T Pd
i +

+ ∑
j1∈N

∑
j2∈N

∑
i1∈M

∑
i2∈M

xi1, j1(t)xi2, j2(t)d j1, j2(t)T Edi1,i2

The cost ofVMs migrationis a per-VM metric
that implements an energy model for the migration
process. When a generic VMj migrates we observe
two main effects. First, the whole memorymj of the
VM to be migrated is sent to the destination server
(actually the amount of data transferred is slightly
higher due to the need to retransmit dirty memory
pages, but we neglect this effect due to the typical
small size of the active page set with respect to the
global memory space of the VM). Second, during
the memory copy between two servers, we observe a
performance degradation that we quantify using the
parameterKMi for serveri hosting VM j. According
to the results in literature, this performance degra-
dation is typically in the order of 10% (Clark et al.,
2005) but typically takes just a few tens of seconds,
which is significantly lower if compared to the time
slot durationT . The energy cost for the migration
VM j is then:

EM j (t) = ∑
i1∈M

∑
i2∈M

g−i1, j(t)g
+
i2, j

(t)

(

mj(t)Edi1,i2
+

+(1−KCi1
)Pm

i1 KMi1
T +(1−KCi2

)Pm
i2 KMi2

T

)

This model is significantly more complex than



typical models that just consider the number of migra-
tions such as (Marotta and Avallone, 2015). However,
this complexity is justified by the choice to consider a
complete network model in our paper. By adding this
component to the objective function, we assume that
a migration can be carried out only if the overall cost
for migration is compensated by the energy savings
due to the better VM allocation.

We now discuss the constraints of the optimiza-
tion problem. The first group of constraints concerns
the capacity limit of the bin-packing problem of VM
allocation. Constraint 1.2 means that CPU demands
c j(t) of VMs allocated on each server must not exceed
the server maximum capacitycm

i . The quadratic con-
straint 1.3 means that for each server, the VM com-
municating with VMs outside that server must not
exceed the server link capacity (defined asdm

i ). The
amount of data exchanged between two VMs isd j1, j2,
and the formulaxi, j1(t)+xi, j2(t)−2xi, j1(t)xi, j2(t) cor-
responds to the binary operator based formulation
xi, j1(t)⊕ xi, j2(t) meaning that we consider just VMs
that are allocated on two different servers, because
two VMs that are on the same server can communi-
cate without using the resources of the network links.
Constraint 1.4 means that memory demandsmj(t) of
VMs allocated on each server must not exceed the
available memory on the serversmm

i . Constraint 1.5
is still related to the classic bin-packing problem and
means that each VM must be allocated on one and
only one server.

The next group of constraints is related to the mi-
gration process. Specifically, constraint 1.6 is short
notation that combines multiple constraints. First, a
VM may be involved in at most one migration (the
inequality constraint). Second, a VM involved in a
migration must appear in both the matricesg−i, j(t) and
g+i, j(t). Constraint 1.7 means that a VM may migrate
only from a server where the VM was allocated at
time t −1. Constraint 1.8 means that a VM may mi-
grate only to a server where the VM is allocated at
timet (this constraint is redundant, because it is inher-
ently satisfied by constraint 1.9, but we add it for the
clarity of the model). Constraint 1.9 expresses how
the VM allocation at timet is the result of the alloca-
tion at timet −1 and of the migrations.

Finally, constraint 1.10 models the boolean nature
of xi, j(t), g+i, j(t), g−i, j(t), andOi(t).

4 EXPERIMENTAL RESULTS

In this section we present the experimental results per-
formed to validate and evaluate our proposal. Af-
ter a description of the experimental setup, we com-

pare the performance of the proposed VMs allocation
model with other solutions consistent with propos-
als in literature. Furthermore, we specifically investi-
gate the contribution of VMs migrations to the global
data center energy consumption, and evaluate the im-
pact of different data center sizes on the optimization
model performance.

4.1 Experimental Setup

We now describe the experimental setup considered
in our tests.

Server characteristics and power consumption
are based on the publicly available energystar
datasheets2. Specifically we consider a Dell R410
server (power consumption ranges from 197.6 W to
328.2 W) with a 2×6 cores Xeon X5670 2.93MHz
ans 128 GB of RAM. We assume that each VM is
requiring 4 cores and 40 GB of RAM, so that each
server can host up to three VMs. The time slot that
we consider has a durationT =15 minutes. As op-
timization solver we use IBM ILOG CPLEX 12.63,
that is able to handle the non-convex and quadratic
characteristics of our problem.

To apply the proposed model, we consider traces
of resources utilization (CPU, memory, and network)
form a real data center hosting a e-health application
that is deployed over a private cloud infrastructure;
our traces show regular daily patterns. In the data
center we consider 80 VMs (as a default value) so that
the typical number of physical servers is in the order
of 20-30. It is worth to note that this scenario, even if
the data center is relatively small, is significant for our
goal that is the validation of the proposed optimiza-
tion model. Moreover, in order to improve the scal-
ability of our approach, we can integrate our model
with the Class-based approach to VMs allocation de-
scribed in (Canali and Lancellotti, 2015; Canali and
Lancellotti, 2016), so that we can focus on a small
scale allocation problems and then replicate our re-
sults on a larger scale.

We recall that the data center network is based on
a two-level structure, with Top-of-Rack switches and
an upper layer of networking managing the communi-
cation among multiple clusters of servers. The infor-
mation on the network energy consumption is based
on the following assumption: the communication be-
tween VMs passing through just one level of the net-
work consumes half energy with respect to a com-
munication passing both levels of the data center net-

2https://www.energystar.gov/index.cfm?c=archives.en-
terpriseservers

3www.ibm.com/software/commerce/optimization/cplex-
optimizer/



work. The energy consumption of network apparatus
is derived from multiple sources: the basic consump-
tion values for the switching infrastructure of the data
center are based on the Cisco Catalyst 2960 series
data sheet4, while the parameters for power reduc-
tion when idle mode is used are inferred from tech-
nical blogs5. From these sources we define the per-
port network power as 4.2 W, and the energy cost for
transferring one byte of data as 3 mJ in the case we
are passing only through the ToR switch and 6 mJ if
the core network is involved. It is worth to note that,
although our experiments consider an homogeneous
data center, the model is much more general and can
be directly used to describe a data center where each
server and each part of the network infrastructure is
characterized by different power consumptions.

Throughout our analysis, we consider three mod-
els for VMs allocation, namelyMigration-Aware
(MA), No Migration-Aware (NMA), andNo Network-
Aware (NNA). The MA model is our proposal de-
scribed in Section 3. The NMA model is a model
where the cost of VM migration is not considered
(that is, we considerEM j (t) = 0 ∀ j ∈ N in the ob-
jective function). This model is consistent with other
proposals in literature, such as (Huang et al., 2012).
Finally, the NNA model does not consider neither
migration nor network-related energy costs and only
aims to minimize the number of powered-on servers,
as in (Beloglazov and Buyya, 2012).

As we do not have a complete definition of the net-
work exchange among the VMs in our traces, but just
a description of the global data coming in/out form
each single VM (without the breakdown for source
or destination), we re-constructed this information
by creating two different scenarios. In the first one,
namelyNetwork 1, we simply randomly distribute the
incoming traffic so that the summation remains equal
to the available data. In the second scenario,Network
2, traffic is randomly distributed across the VMs ac-
cording to the Pareto law, so that 80% of the traffic
of each VM goes to just 20% of the remaining VMs,
with the set of VMs with the highest data exchange
shifting over time.

The main metric of our analysis to compare the
different models is the total energy consumed in the
data center (Etot). To provide additional insight on
the contributions to the total energy consumption, we
also evaluate the single components related to com-
putational demand (EC), data transfer (ED), and VM

4http://www.cisco.com/c/en/us/products/collateral/
switches/catalyst-2960-x-series-switches/datasheetc78-
728232.html

5http://blogs.cisco.com/enterprise/reduce-switch-
power-consumption-by-up-to-80

migrations (EM).

4.2 Model Comparison

The first analysis is a comparison of the main models
considered in our paper. Figure 2 provides a repre-
sentation of the total energy consumption and of its
components for the three models for theNetwork 1
scenario.
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Figure 2: Energy Consumption Comparison.

If we focus on the total energy consumption of
the three models (leftmost columns of the Fig. 2),
we observe clearly that the proposed MA model pro-
vides better performance, with an energy saving of
20% over the NMA alternative and up to 40% with
respect to the NNA one. The reasons behind this re-
sult can be understood when considering the contribu-
tions to the total energy in the remaining of the Fig. 2.
If we consider just the computation energy contri-
bution, each solution is identical, because every ap-
proach can consolidate the VMs in the same number
of physical servers. Data transfer is the second source
of energy consumption: we observe that the NMA
scheme achieves the best results (we recall that the
Data Transfer does not include the energy for transfer-
ring VMs during the migration, which is included in
the Migration contribution). Energy consumption of
the NNA model is more than 60% higher and even the
MA model show an energy consumption more than
20% higher. The poor performance of the NNA model
is intuitive, while to explain the comparison between
the MA and NMA models we must refer to the last
component, that is the energy consumed for VMs mi-
gration. We observe that the lower network-related
energy consumption of the NMA model comes at the
price of a number of migrations that far overweight
the benefits of optimized network data exchange. For
the NNA approach, again, not considering the cost of
migrations leads to a high energy consumption related
to this component of the total energy consumption.



Table 2: Energy Consumption Comparison [KJ].

Model E tot EC ED EM

Network 1
Migration-aware 6128 4829 1223 76

No Migration-aware 7658 4829 1018 1811
No Network-aware 10297 4829 1664 3803

Network 2
Migration-aware 5981 4801 1133 47

No Migration-aware 7671 4801 1071 1799
No Network-aware 9511 4799 1572 3140

The results for theNetwork 2scenario confirm the
message previously explained for theNetwork 1sce-
nario. Table 2 provides results on energy consump-
tion for both network scenarios. If we focus on the
second scenario, we observe that all the findings about
the energy consumption comparisons are confirmed in
this second set of experiments, and also the ratio are
similar, with an energy saving of the MA model that
is 37% and 22% with respect to the NNA and NMA
alternatives, respectively.

4.3 Impact of Migration

From the first experiments we have a clear confirma-
tion that network-aware models (MA and NMA) pro-
vide a major benefit in terms of energy savings for
modern data centers. Hence, we perform a more de-
tailed comparison of the MA and NMA models.

Figure 3a compares the per-time slot energy con-
sumption of the data center for the two models. The
lines with black and white squares represent the to-
tal energy. These lines clearly show how the MA
model outperforms the alternative. We also observe
that, for every time slot, data transfer-related energy
consumption (black and white circles) is lower for the
NMA model – this has already been motivated in Sec-
tion 4.2. The most interesting result is to see how the
line shape of total energy cost follows the one of mi-
gration, clearly showing the importance of this contri-
bution for the total energy consumption.

Figure 3b shows the per-time slot energy con-
sumption for the NMA model in the case ofNet-
work 2scenario: the result is a further confirmation of
the importance of our choice to add a detailed model
for migration-related energy consumption in the pro-
posed energy optimization model. In this case, the
variations in data traffic exchange between VMs trig-
ger large burst of migration that account for an energy
consumption significantly higher than the energy con-
sumed for data transfer, thus explaining the high total
energy consumption. The MA alternative avoids these
bursts by limiting substantially the number of migra-
tions, that are carried out only when their overall cost
is compensated by the energy savings due to better
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Figure 3: Energy Consumption Over Time.

VMs allocation. As a result, the energy consumption
is more stable over time and leads to the major global
energy saving already shown in Table 2.

4.4 Result Stability

As final analysis, we evaluate if the energy savings
of our proposal are stable with respect to the problem
size in terms of number of VMs.

Figure 4 provides an analysis of the per-VM en-
ergy consumption as the size of the data center grows
from 20 to 140 VMs for the MA model. The graph
shows that the per-VM data transfer and migration
energy remains rather stable, while the computation
energy component is more variable, accounting for
the fluctuations in the total energy. This effect is re-
lated mainly to the effectiveness of the server con-
solidation process: depending on the problem size
and on the VM packing solutions, we may encounter
situations where physical servers are not fully uti-
lized. This fragmentation effect is made more evi-
dent by the adoption of the Class-based consolidation
model (Canali and Lancellotti, 2015), that increases
the VM allocation process scalability at the expenses
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of possible sub-optimal allocations. We also observe
that, as the problem size grows, the general trend of
computation energy is towards lower per-VM con-
sumption and reduced fluctuations. Again this can
be explained because, as the problem size grows, the
quality of the achieved solution for VM allocation in-
creases, because the fraction of servers under-utilized
due to fragmentation in the optimization problem so-
lution is reduced.

5 RELATED WORK

The problem of VMs allocation has been studied in
literature in the last years. One of the most signif-
icant papers in the field is (Beloglazov et al., 2012),
that defines the VMs allocation problem and proposes
some heuristics for its solution. This effort focuses on
the placement of new VMs and migration of exist-
ing VMs when the server utilization exceeds a spe-
cific threshold, with risk of SLA violations. How-
ever, the VMs allocation process in (Beloglazov et al.,
2012) does not take into account network data ex-
changes between VMs and focuses only on computa-
tional requirements, aiming at minimizing the number
of turned on physical servers. A similar approach is
considered in (Mastroianni et al., 2013), that proposes
a self-organizingand distributed approach for the con-
solidation of VMs based on two resources, CPU and
RAM.

A VMs allocation model taking into account the
network-related costs is proposed in (Huang et al.,
2012). However, this study does not model the cost of
VMs migration and re-computes the whole VM allo-
cation from scratch every time the model is solved. A
similar approach, but aiming at supporting a statisti-
cal consolidation of VMs over long periods of time, is
proposed in (Wang et al., 2011), where the VM place-
ment problem is modeled as a stochastic bin pack-

ing problem. However, this study does not consider
the impact of migration as it assumes that VM mi-
gration occurs once in very long periods of time (typ-
ically in the order of one ore more days). A simi-
lar long-term approach is used in (Canali and Lan-
cellotti, 2015; Canali and Lancellotti, 2016). In this
paper, multiple VMs metrics (such as CPU require-
ments and network utilization) are taken into account
in but, as in (Huang et al., 2012; Wang et al., 2011),
the migration cost not is considered and a long-term
VMs allocation is the main goal of the consolidation
bin-packing problem. However, it is worth to note
that (Canali and Lancellotti, 2015) proposes a mod-
ular approach to the problem of VMs allocation that
is applied also to our study in order to improve the
scalability of the problem when large data centers are
taken into account.

An approach which is closer to our vision is pro-
posed in (Marotta and Avallone, 2015): this on-
line algorithm considers both computational demands
and migration costs, following a dynamic program-
ming approach where the previous VMs allocation
is taken into account as the basis for the future al-
location solution. However, the objective function of
the proposed model is quite straightforward from an
energy point of view, as the model simply weights
the number of servers turned on against the num-
ber of migrations, without providing a detailed model
for energy consumption and relying on externally–
controlled weights to merge these two sub-objectives.

If we consider explicitly the literature on energy
models for cloud data centers, the linear correlation
between computational load on the servers and power
consumption (the same model we use in our paper)
is the most common approach, proposed in (Verma
et al., 2008) and adopted also in (Beloglazov et al.,
2012; Lee and Zomaya, 2012). Some alternative non-
linear models are adopted in (Boru et al., 2015), but
these solutions are typically not very popular in lit-
erature, thus justifying our idea to keep as simple as
possible the energy model for computation while in-
troducing support for additional energy consumption
factors.

The study of networking and data traffic exchange
among VMs in a cloud data centers usually is car-
ried out with two possible goals. A first goal is to
improve the performance of applications deployed on
the data center. For example, in (Meng et al., 2010;
Piao and Yan, 2010; Alicherry and Lakshman, 2013)
the main goal is to reduce inter-VM communication
latency through latency-aware VM allocation policies
in order to guarantee fast communication among VMs
and fast access to data stored on remote file systems.
A similar goal is considered also in the S-CORE sys-



tem (Tso et al., 2013), but the goal of optimizing
performance is relaxed in the simpler objective of
avoiding overload on the data center network links.
The second goal is related to reduce network-related
energy consumption. To this aim, proposals such
as (Marotta and Avallone, 2015; Wang et al., 2014)
represents first examples of network-aware VMs allo-
cation that aims at reducing energy consumption by
placing on the same physical server VMs that have
significant data exchange. Another group of papers
focused on energy consumption propose some de-
tailed models to capture network-related costs. For
example, (Chiaraviglio et al., 2013) introduces a lin-
ear power model for energy consumption on a link,
while (Chabarek et al., 2008) presents a detailed en-
ergy model for the consumption of a router. In (Yi
and Singh, 2014) Yiet al. present a solution to con-
solidate traffic into few switches in order to minimize
energy consumption in data centers based on a fat-
tree network topology: however, the paper solution
is dependent on the specific network architecture of
the cloud data center and limited effort is devoted
to the analysis of computational requirements. Our
work clearly fits in the area of research aimed at re-
ducing network-related energy consumption in cloud
data centers. In particular, a qualifying point of our
contribution is adopting a sophisticated energy mod-
els for data exchange and using it to propose an in-
novative computation- and network-aware model for
VMs allocation.

6 CONCLUSIONS AND FUTURE
WORK

Throughout this paper we tackled the problem of
energy-wise optimization of VMs allocation in cloud
data centers. Our focus encompasses both traditional
and future software-defined data centers that lever-
ages technologies such as network virtualization and
software-defined networks.

Specifically, we proposed an optimization model
to determine VMs allocation in order to combines
three goals. First, consolidation of VMs aims to
reduce the number of powered-on physical servers.
Second, the model considers data exchange between
VMs and aims to reduce power consumption for data
transfer by placing VMs with significant amount of
data exchange close to each other (ideally on the same
server). Finally, we also model energy consumption
due to VMs migration considering both data transfer
and CPU overhead due to this task. This model al-
lows to easily evaluate if the cost of migrating a VM
is balanced by the benefits of reducing the number

of turned on servers and optimizing the data transfer
over the data center infrastructure. It is important to
note that the components of the objective function of
our optimization problem measures directly the en-
ergy consumption and can be immediately combined
without the need to add weight parameters to merge
the (often conflicting) goals of optimal VMs alloca-
tion and of avoiding a high number of VM migrations.

Our experiments, based on traces from a real data
center, confirm the validity of our model, that reduces
the energy consumption from 60% to 37% with re-
spect to a solution which is not aware of network-
related energy consumption, and from 22% to 20%
with respect to a model that does not take into account
the cost of migrations.

This paper is just a first step of a research line that
aims to provide innovative solutions for the energy
management of software-defined data centers. Future
efforts will focus mainly on improving the scalability
of our approach through the proposal of heuristics for
determining the VMs migration strategy, with a spe-
cific focus on the most advanced features of software-
defined infrastructures for the management of data ex-
change among VMs.
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