
Balancing Accuracy and Execution Time for Similar

Virtual Machines Identification in IaaS Cloud

Claudia Canali, Riccardo Lancellotti

Department of Engineering “Enzo Ferrari”

University of Modena and Reggio Emilia

Email: {claudia.canali,riccardo.lancellotti}@unimore.it

Abstract—Identification of VMs exhibiting similar behavior
can improve scalability in monitoring and management of cloud
data centers. Existing solutions for automatic VM clustering may
be either very accurate, at the price of a high computational cost,
or able to provide fast results with limited accuracy. Furthermore,
the performance of most solutions may change significantly
depending on the specific values of technique parameters. In this
paper, we propose a novel approach to model VM behavior using
Mixture of Gaussians (MoGs) to approximate the probability
density function of resources utilization. Moreover, we exploit the
Kullback-Leibler divergence to measure the similarity between
MoGs. The proposed technique is compared against the state
of the art through a set of experiments with data coming
from a private cloud data center. Our experiments show that
the proposed technique can provide high accuracy with limited
computational requirements. Furthermore, we show that the
performance of our proposal, unlike the existing alternatives, does
not depend on any parameter.

Keywords—KL Divergence, VM Management, Clustering

I. INTRODUCTION

Cloud computing is a fundamental resource for the devel-
opment of novel services as it is a successful solution to cope
with the growing and highly variable requests of processing
power and storage capacity that characterize the evolution of
the emerging digital society.

The most notable outcome of the cloud success is the ever-
increasing size and complexity of cloud data centers hosting a
constantly growing number of virtual machines (VMs), that are
creating a challenge for the scalability of monitoring and man-
aging tasks. Resource monitoring is particularly challenging in
Infrastructure as a Service (IaaS) cloud systems, where several
customer applications are hosted in virtualized environments.
A customer application typically consists of multiple software
components (e.g., the tiers of a multi-tier Web application),
and each component runs on a separate VM. In these cloud
systems, VMs are usually considered as black boxes with
independent behaviors, hence information needs to be collected
about each single VM of the data center, thus exacerbating the
scalability issues of the monitoring task.

A solution recently proposed to address the scalability
of monitoring in IaaS cloud system is based on clustering
VMs that exhibit a similar behavior in terms of utilization of
system resources [1]–[3]. In this case, fine-grained monitoring
can be limited to a subset of representative VMs for each
cluster, thus significantly reducing the amount of information
collected by the monitoring system. Some existing solutions
for automatic VM clustering are very accurate, but at the price

of high computational costs [3]. Other solutions [1], [2] are
much faster, but less accurate. Furthermore, all the techniques
require some specific parameter or data filtering step that, if
not correctly tuned, may result in poor performance.

In this paper we propose a novel approach, namely KL-
based clustering, that exploits Mixture of Gaussians (MoGs)
to model VM behavior and the Kullback-Leibler divergence
to measure the similarity between VMs. To the best of our
knowledge, this is the first technique that aims to provide
fast and accurate VM classification without relying on any
parameter or data filtering step.

We test our proposal against the existing solutions in a case
study with data coming from a private cloud data center hosting
a multi-tier e-health application, which is deployed on VMs
running Web servers and DBMS. Our experiments achieve the
double goal to assess the limitations of existing solutions and
to evaluate our proposal. We demonstrate that the proposed
technique achieves a clustering with an accuracy comparable
with the best existing solutions, but with a computational
requirements significantly lower and without need to tune any
algorithm parameter.

The rest of this paper is organized as follows. Section II
describes the reference scenario for the application of VM
clustering. Section III presents the proposed technique based
on Kullback-Leibler divergence and Section IV describes the
existing approaches. Section V provides the experimental
comparison of our proposal with existing techniques for VM
clustering, while Section VI concludes the paper with some
final remarks.

II. REFERENCE SCENARIO

We now describe the reference scenario for our proposal,
where a IaaS cloud data center integrates a clustering tech-
nique [1]–[3] to improve the scalability of monitoring and
management.

We assume that the IaaS cloud system adopts a two-level
management strategy, as in [4]. The first level consists in a
local management, that is performed on each physical server:
it detects overload conditions in real-time making use of the
resource measurements of the VMs hosted on the server, and
exploits live VM migration whenever overloaded servers are
detected [5]. The second level is a global management, which
is controlled by a central node: it is responsible for periodically
executing a consolidation technique to place VMs on as few
physical servers as possible to reduce the infrastructure costs
and avoid expensive resource over-provisioning [6], [7]. Since

consolidation strategies in IaaS cloud infrastructures usually
consider each VM as a stand-alone object with independent
resource usage patterns, detailed information has to be col-
lected with high sampling frequency (typically 1 sample every
5 minutes [6], [7]) about each VM, thus creating scalability
issues for the monitoring system.

A VM clustering technique may improve scalability of the
monitoring process by automatically grouping together VMs
showing similar behaviors in terms of resource usage [1]–[3].
The process of VM clustering is carried out periodically to
identify classes of VMs that are running the same software
component of the same customer application. Once the cluster-
ing is done, few representatives are selected for each identified
class. We choose to select at least three representatives due
to the possibility that a selected representative unexpectedly
changes its behavior with respect to its class: quorum-based
techniques can be exploited to cope with byzantine failures of
representative VMs [8]. At this point, only the representative
VMs of each class are monitored with high sampling frequency
to collect information for the periodic consolidation task, while
the resource usage of the other VMs of the same class is
assumed to follow the representatives behavior. On the other
hand, the non representative VMs of each class are monitored
with coarse-grained granularity to identify behavioral drifts
that could determine a change of class. Moreover, sudden
changes leading to server overload are handled by the local
management through live VM migration.

Monitoring
Local

Management

Global

Management

VMs

Clustering

5
4

1

3a

2 3b

Fig. 1: Cloud system using VM clustering

Figure 1 depicts the interactions between the main compo-
nents of the reference scenario. The monitoring system on each
physical server collects data about resource usage of the hosted
VMs and sends them to the local management system (arrow
1), which is responsible for triggering live VM migration in
case of host overload [5]. Moreover, the monitoring system
processes periodically send data to the VM clustering system
(2), which automatically groups similar VMs applying one
of the techniques proposed in [1]–[3]. The clustering results
(identified VM classes and representatives) are sent to the
global management (3a) and to the monitoring system (3b).
The monitoring system exploits this information to differen-
tiate the sampling frequency between representative and non
representative VMs. The data collected with different granu-
larity are sent to the global management system (4) which is
responsible for two tasks. First, it periodically executes the
cluster-based consolidation strategy, exploiting the resource
usage of the representative VMs to characterize the behavior
of every VM of the same class: the consolidation decisions are
finally communicated to the local management systems (5) on
each server to be executed. Second, the global management

system checks for behavioral drifts of non representative VMs.
It is worth to note that VMs that change their behavior, as
well as VMs causing overload of physical servers detected
by local management, are marked as unclassified VMs and
are monitored again with high sampling frequency to be re-
clustered.

Thanks to differentiated sampling frequencies based on the
knowledge of VM clusters, this approach may significantly
reduce the amount of data collected for the global management
of the cloud data center, as discussed in [1]–[3]. However,
the solutions proposed in these studies present drawbacks
related to the computational cost, the stability of the accuracy
results or the dependence on specific parameter values. In
the next section, we present a novel VM clustering technique
that aims to provide high accuracy with limited computational
requirements, and does not depend on any parameter.

III. KL-BASED CLUSTERING TECHNIQUE

Throughout this section we present the newly proposed
KL-based technique for VM clustering. Before delving into
the details of this technique, we introduce the main steps
that are common to every solution for VM clustering. This
approach has the twofold goal to (1) provide an overview
of the structure of the proposed technique, and (2) provide a
common background to compare our proposal with the existing
alternatives described in Section IV. Specifically, we can divide
any VM clustering technique in the following steps:

• Extraction of a quantitative model for describing the
VM behavior

• Definition of a distance representing the similarities
among the VMs

• Clustering based on the proposed distance to identify
classes of similar VMs

The steps of the KL-based technique are described in detail in
the remaining of this section.

A. VM behavior quantitative model

Our proposal to describe the VM behavior is to model the
usage of VM resources using a linear combination of multiple
Gaussian distributions, that we call a Mixture of Gaussians
(MoG). To formalize our model, we consider a set of N VMs,
and for each VM n ∈ [1, N] a set of M metrics, where each
metric m ∈ [1,M] represents the usage of a VM resource.

Let (Xn
1 ,X

n
2 , . . . ,X

n
M) be a set of time series, where

X
n
m is the vector consisting of the samples of the resource

usage represented by the metric m of VM n. The probability
density function p(Xn

m) of each time series can be considered
as the description of the behavior of metric m on VM n.
We approximate the probability density using the previously
introduced MoG:

p(Xn
m) ≈ mognm =

Gn
m

∑

i=1

πn
m,i · g(µ

n
m,i, σ

n
m,i)

where Gn
m is the number of Gaussian distributions used to

model the probability distribution of samples for metric m on

VM n, and πn
m,i, µ

n
m,i, σ

n
m,i are the weight, mean value and

standard deviation of the specific component of the MoG.

The approximation of the probability distribution through
a MoG is carried out using the mclust package provided by
the R statistical analysis software [9]. The package performs
a clustering of the data samples to automatically identify the
number of modes in the probability density function and then
iteratively adjusts the parameters of each Gaussian component
in order to obtain a close fitting of the probability density
function with the MoG. It is worth to note that no parameters
are involved in this process.

B. Definition of a distance

The second step of the technique consists in introducing
a distance to define similarities among VMs starting from the
representation of their behavior. To define the VM distance we
exploit the Kullback-Leibler (KL) divergence, which measures
the similarity between two probability distributions, possibly
modeled as MoG [10]. The KL divergence between two MoG
mog1, mog2 is defined as:

KL(mog1,mog2) =

∫

∞

x=0

mog1(x) ln

(

mog1(x)

mog2(x)

)

dx

However, an analytical solution in a closed form of such
equation is not always possible, and numeric approximation of
the integrals is computationally expensive. For two Gaussian
distributions g1 and g2, the KL divergence can be defined with
the following closed analytical form:

KL(g1, g2) = log(
σ2

σ1
) +

σ2
1 + (µ1 − µ2)

2

2σ2
2

−
1

2
(1)

where µ1, µ2, σ1, and σ2 are the mean values and the standard
deviation of the two distributions g1, g2 [11].

For MoGs, we can use an approximation, namely vari-
ational divergence [11], that extends Equation 1. The KL
divergence for two Mixtures of Gaussian distributions mog1
and mog2 is thus defined as:

KLV D(mog1,mog2) =

n1
∑

i=1

π1,i·ln

(

∑n1
j=1 π1,je

−KL(g1,i,g1,j)

∑n2
k=1 π2,ke

−KL(g1,i,g2,k)

)

Finally, the distance between two VMs n1 and n2 is the
sum of squares of the KL divergence between the MoGs
representing the VM behavior for each metric:

D(n1, n2) =

M
∑

m=1

(

KLV D(mogn1

m ,mogn2

m)
)2

C. Clustering

The last step of the technique aims to obtain the final clus-
tering solution. The distance previously defined is computed
for each couple of VMs, obtaining a distance matrix D. Then,
the distance matrix is fed into a clustering algorithm to obtain
the final solutions.

It is worth to note that to cluster together elements of a
set starting from a distance matrix, traditional algorithms such

as K-means or Kernel K-means [12] are not viable options
because they expect as input a set of coordinates for each
element to cluster. For this reason, we exploit the widely
adopted spectral clustering algorithm, which is explicitly de-
signed to manage as input a similarity matrix or a matrix-based
representation of graphs [13]. The output of the clustering step
is a vectorC, where the n-th element cn is the ID of the cluster
to which VM n is assigned.

Once the clustering is complete, we need to select for each
class some representative VMs that will be monitored with
fine-grained granularity. To this purpose, it is worth to note that
the output of the K-means internal phase of spectral clustering
provides as additional output the coordinates of the centroids
for each identified class. In this case, the representative VMs
can be selected as the VMs closest to the centroids.

IV. ALTERNATIVE CLUSTERING TECHNIQUES

We now discuss briefly a few alternative approaches, dis-
cussing the different choices used to implement the three main
steps previously outlined for a VM clustering technique.

A. Ensemble-based

The Ensemble-based technique, described in [3], exploits
the probability density of the utilization of VM resources to
model the VM behavior, as done in the KL-based approach.
But, differently from the proposed technique, the behavioral
model of a VM is described through a set of normalized
histograms, one for each considered metric of the VM.

Then, the Ensemble-based approach compute a per-metric
distance between every couple of VMs by exploiting the
Bhattacharrya distance [14], which determines the distance
between two different histograms. The use of this distance
for VM clustering has been proposed for the first time in a
preliminary paper [15].

This per-metric distance is used to create a set of distance
matrices, that are used to compute separate per-metric clus-
tering solutions. For this step we exploit the same spectral
clustering algorithm already described for the proposed KL-
based clustering technique. To merge the separate clustering
solutions, we exploit a further clustering step where the
input is a co-occurrence matrix determined through ensemble
techniques. Specifically, the co-occurrence matrix contains, for
each couple of VMs (n1, n2), the number of times that the
VMs are clustered together throughout the whole set of per-
metric clustering solutions. The last clustering step exploits
again the spectral algorithm to obtain the final clustering
solution.

B. Correlation-based

The correlation-based technique [1] describes the behavior
of a VM using the correlation between the time series of
different metrics of the same VM [1]. The correlation values
for each couple of metrics (m1,m2) are then assembled into

a single vector of length
M ·(M−1)

2 that is the feature vector
characterizing the VM. It is worth to note that, to improve
the quality of the VM behavior representation, some pre-
processing of the data may be necessary. In particular, previous
experiments demonstrate that filtering the time series to remove

periods when the VMs are idle may significantly improve the
clustering performance, especially when short time series are
involved [1].

The output of the first step of the technique is a set of
N feature vectors (one for each VM) that define a vector

space of
M ·(M−1)

2 dimensions. By defining the vector space we
inherently define also a distance metric, that is the Euclidean
distance between two feature vectors.

The set of N feature vectors describing the VMs is then
fed into the clustering algorithm. For the clustering step we
exploit a K-means algorithm [12].

C. PCA-based

The PCA-based technique [2] is an evolution of the previ-
ously described Correlation-based solution aiming to improve
the quality of the clustering results.

Like the Correlation-based solution, this technique exploits
the correlation values between each couple of time series
referring to the M considered metrics of the same VM,
and shares with the previous technique the need to filter the
input time series to achieve good performance. The correlation
values are assembled into a M × M square matrix; then,
we compute the eigenvectors of this correlation matrix. In
other words, we apply a Principal Component Analysis (PCA)
over the time series of each VM. Using the well known
rule of the scree plot visual analysis [16], we identify the
number P of components that are significant to reconstruct
the VM behavior (in our experiments only one component
is sufficient to describe the VM behavior [2], so P = 1).
As each component is associated to an eigenvector of the
correlation matrix, we build a feature vector to describe the
VMs behavior using only the P eigenvectors associated to the
highest eigenvalues.

As for the Correlation-based approach, the feature vector of
length P ·M defines a vector space with an Euclidean distance.
Clustering is carried out with the K-means algorithm.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the proposed methodology
and compare it with existing approaches for VMs clustering.
Specifically, we aim to point out pros and cons of each
technique, with particular attention to critical elements such
as stability of the results, parameter dependence and computa-
tional cost. To this purpose, we apply the clustering techniques
to a case study based on a dataset coming from an enterprise
cloud data center. We start the technique evaluation with the
discussion of the parameters that may affect the performance
of each solution. Next, we provide an experimental comparison
on the clustering results of the different approaches discussing
the impact of data filtering, and we pass to analyze the
sensitivity of the performance to the number of considered
metrics. Finally, we compare the execution times of the dif-
ferent clustering approaches.

A. Case study

Our case study is based on a Web e-health application for
the automated management of lab exams, which is hosted on

a private data center and deployed on 110 VMs according to a
multi-tier architecture. The 110 VMs are divided between the
two software components of the Web application: Web servers
and back-end servers (that are DBMS). We collect data about
the resource usage of every VM for different periods of time,
ranging from 1 to 5 days with a sampling frequency of 5
minutes. For each VM we consider 10 metrics describing the
usage of several resources, including CPU, memories, disk,
network, and number of active processes.

The final goal of VM clustering applied to this case study
is to correctly classify the VMs in two groups: Web server
and DBMS. To evaluate the performance of VM clustering
we consider a widely used measure, namely purity [17], that
expresses the fraction of correctly classified VMs. The cluster-
ing purity is obtained by comparing the clustering solution C

with the vector C∗, which represents the ground truth. Purity
is thus defined as:

purity =
|{cn : cn = cn∗, ∀n ∈ [1, N]}|

|C|

where |{cn : cn = cn∗, ∀n ∈ [1, N]}| is the number of
VMs correctly clustered and |C| = N is the number of VMs.

B. Comparison of Clustering Approaches

We now compare the different clustering techniques ap-
plied to our case study. In particular, we consider the pro-
posed KL-based methodology and three existing approaches:
Ensemble-based [3], PCA-based [2] and Correlation-based [1].

A first comparison is related to the parameters affecting
the performance of the different techniques. The Ensemble-
based solution relies on normalized histograms to represent
VM behavior. A parameter involved in this approach is the
number of bins used to compute the histograms. Multiple
rules are available to determine this number, and results in
literature show that the selected rule can affect the quality of
the clustering performance [3]. On the other hand, the PCA-
based solution is characterized by the number of principal
components to feed into the clustering step, as mentioned in
Section IV. Again, results in literature demonstrate that the
number of considered components may affect the clustering
performance [2]. Finally, the Correlation-based solution is
not dependent on any parameter, like the proposed KL-based
technique [1].

The second comparison is based on a quantitative evalua-
tion of the achieved clustering performance. Figure 2 shows
the clustering purity as a function of the time series length for
the different clustering techniques. In the legend we indicate
an “(F)” next to PCA-based and Correlation-based approaches
to recall that these techniques require a pre-filtering of data
to eliminate idle periods from the time series, as described in
Section IV. Otherwise, the performance of these approaches
drastically decreases, as shown in Table I, where we present the
clustering purity achieved without applying any data filtering.

Despite the application of data filtering, we see from Fig-
ure 2 that the performance of the Correlation-based approach
significantly decreases for shorter time series (1-2 days). On
the other hand, the PCA-based technique remains quite stable

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

KL-based
Ensemble-based

PCA-based (F)
Correlation-based (F)

Fig. 2: Clustering purity for alternative approaches

TABLE I: Clustering purity without data filtering

Clustering Time series length [days]

Approach 5 4 3 2 1

PCA-based (No F) 0.708 0.678 0.680 0.629 0.641

Correlation-based (No F) 0.670 0.662 0.598 0.575 0.571

for every time series length, while the best performance is
achieved by the Ensemble-based approach. The proposed KL-
based technique shows a good stability for different time series
lengths, while achieving performance only slightly worse with
respect to the Ensemble-based approach, with differences in
clustering purity ranging from 3% to 3.5%.

C. Sensitivity to number of metrics

The number of metrics used to determine the VM behavior
model may affect the performance of the VM clustering.
Using a high number of metrics may be counter-productive
because non-significant data are likely to be fed into the final
clustering step, with effects comparable to noise that degrades
the clustering performance. In this experiment we evaluate
the sensitivity to the number of metrics on the clustering
techniques by considering a reduced set of metrics, which is
limited to four metrics mostly used in data center management
strategies [4], [6], [18]: CPU and memory utilization, input
and output packet rate. It is worth to note that an automatic
mechanism to select metrics for VM clustering purposes has
been proposed in a preliminary study by the authors [15]: the
selection, which is based on the analysis of autocorrelation
and coefficients of variation of the time series, confirms the
presence of the above mentioned metrics in the selected set.

Figure 3 shows the purity of the clustering approaches
for the entire set of 10 metrics and for the reduced set
of four selected metrics. We observe that the number of
metrics has very different impacts on the performance of the
considered approaches. The KL-based and Ensemble-based
techniques achieve quite stable results over the different set
of metrics, with a purity slightly improved in the case of few
representative metrics. On the other hand, the performance of
the PCA-based and Correlation-based approaches drastically
decreases in case of few metrics. For the latter approaches,
indeed, the reduction of metrics causes an excessive decrease
in the dimension of the feature vector space used to describe

 0.5

 0.6

 0.7

 0.8

 0.9

 1

KL Ensemble PCA Correlation

C
lu

s
te

ri
n

g
 P

u
ri
ty

All Metrics
Selected Metrics

Fig. 3: Clustering purity for different sets of metrics

the VMs behavior. Differently, both KL-based and Ensemble-
based techniques exploit a distance matrix that do not change
dimension with the metric reduction, maintaining the capability
to achieve accurate clustering. This result demonstrates that
the KL-based and Ensemble-based techniques may achieve
good clustering performance which is not affected by the
presence of metric selection, thus outperforming their PCA-
and Correlation based counterparts.

D. Execution time of clustering techniques

The global execution time required for VM clustering
consists of three different contributions, corresponding to the
main steps of the methodology defined in Section III: first,
the time to extract the quantitative model of VMs behavior;
second, the time to compute the VMs distance; third, the time
to perform the clustering step. In this experiment, we evaluate
the execution times of each step of the methodology on a
machine equipped with an Intel Xeon, 2GHz CPU. Table II
shows the execution times of the three contributions for the
considered clustering techniques.

TABLE II: Time for clustering approaches

Clustering Time [s]

Approach Model Distance Clustering

KL-based 5.82 390.27 11.61

Ensemble-based 1.32 1417.42 69.72

PCA-based 0.11 n/a 5.21

Correlation-based 0.06 n/a 8.21

It is worth to note that the extraction of the quantitative
behavioral model has to be performed separately for every
considered VM, and can be parallelized on distributed nodes.
On the other hand, the second and third contributions represent
a centralized task that can not be parallelized. Hence, for a fair
comparison we measure the time for extracting the behavioral
model of a single VM (second column of the table), while the
other contributions (third and fourth columns) are measured
by considering the corresponding step computed on all the
110 VMs of the dataset.

We observe that the PCA-based and the Correlation-based
approaches show lower execution times than the other tech-
niques for every considered step. With regard to the Ensemble-

based approach, we note that the execution times are particu-
larly high in the case of the second and third contributions, due
to the expensive computation of the Bhattacharyya distance
and to multiple clustering steps. On the other hand, the
proposed KL-based technique requires longer time than the
Ensemble-based approach for the VM model computation, but
is much faster on the other steps. Since the model computation
corresponds to the only step of the methodology that can
be parallelized on multiple nodes, we believe that the KL-
based technique is a preferable choice to apply clustering in
large data centers, while the Ensemble-based approach is better
suited for smaller-sized infrastructures due to the high costs of
the centralized steps.

E. Summary of results

Table III summarize the characteristics of the alternative
clustering approaches. For each technique, we evidence with
bold font the elements that represent potential drawbacks for
the applicability and the performance achievable in a real cloud
environment.

TABLE III: Comparison of clustering approaches

Clustering Parameters Data N. of Execution

Approach Filtering Metrics Time

KL-based None Not Required Low Medium

Ensemble-based # bins Not Required Low High

PCA-based # components Required High Low

Correlation-based None Required High Low

From the table we note that the KL-based technique is
not sensitive to any parameter, and does not require data pre-
processing. Moreover, its stable performance with respect to
the number of considered metrics allows us to reduce the
amount of monitored resources to describe the VM behavior.
For these reasons and for its computational cost, this approach
may be preferable with respect to the other alternatives. It
is worth to recall that the Ensemble-based approach achieves
slightly better performance than the proposed technique, but it
is sensitive to the choice of the number of bins for histograms
computation and requires multiple clustering steps that cause
higher execution times. We can conclude that the KL-based
approach is applicable to a wide range of scenarios, while the
Ensemble-based technique may be a preferable solution for
cases where the number of VMs is limited and the workload
is stable to allow a tuning of the metric histogram bin numbers.

VI. CONCLUSIONS

Previous studies of the authors show that the automatic
VMs clustering may improve the scalability of the monitoring
process in large data centers. However, existing solutions are
affected by some trade-offs regarding the computational costs,
the accuracy of the results and the dependence on specific tech-
nique parameters. We propose a novel approach that exploits
Mixture of Gaussians (MoGs) and Kullback-Leibler divergence
to measure the similarity between VMs. The proposed KL-
based approach is applied to a real dataset coming from
an enterprise data center and compared with the existing
techniques. A wide range of experiments shows that the KL-
based technique may guarantee results that are comparable

with the best performing alternative and are stable thanks to its
non-parametric approach. Moreover, the limited computational
cost makes the proposed approach the preferable alternative in
case of large cloud data centers.

REFERENCES

[1] C. Canali and R. Lancellotti, “Automated Clustering of VMs for Scal-
able Cloud Monitoring and Management,” in Proc. of Conference on

Software, Telecommunications and Computer Networks (SOFTCOM),
Split, Croatia, Sept. 2012.

[2] ——, “Improving Scalability of Cloud Monitoring Through PCA-Based
Clustering of Virtual Machines,” Journal of Computer Science and

Technology, vol. 29, no. 1, pp. 38–52, 2014.

[3] ——, “Exploiting ensemble techniques for automatic virtual machine
clustering in cloud systems,” Automated Software Engineering, pp. 1–
26, 2013, Available online.

[4] Z. Gong and X. Gu, “PAC: Pattern-driven Application Consolidation
for Efficient Cloud Computing,” in Proc. of Symposium on Modeling,

Analysis, Simulation of Computer and Telecommunication Systems,
Miami Beach, Aug. 2010.

[5] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box
and gray-box strategies for virtual machine migration,” in Proc. of

Conference on Networked systems design and implementation (NSDI),
Cambridge, Apr. 2007.

[6] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang, “Energy-Aware
Autonomic Resource Allocation in Multitier Virtualized Environments,”
IEEE Trans. on Services Computing, vol. 5, no. 1, pp. 2 –19, Jan. 2012.

[7] T. Setzer and A. Stage, “Decision support for virtual machine reassign-
ments in enterprise data centers,” in Proc. of Network Operations and

Management Symposium (NOMS’10), Osaka, Japan, Apr. 2010.

[8] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
OSDI, M. I. Seltzer and P. J. Leach, Eds. USENIX Association, 1999,
pp. 173–186.

[9] C. Fraley, A. Raftery, and L. Scrucca, package mclust: Normal Mix-

ture Modeling for Model-Based Clustering,Classification, and Density

Estimation, 2013.

[10] S. Kullback, Information Theory and Statistics, ser. Dover Books on
Mathematics. Dover Publications, 1997.

[11] J. Hershey and P. Olsen, “Approximating the kullback leibler divergence
between gaussian mixture models,” in Acoustics, Speech and Signal

Processing, 2007. ICASSP 2007. IEEE International Conference on,
vol. 4, April 2007, pp. IV–317–IV–320.

[12] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern

Recognition Letters, vol. 31, no. 8, pp. 651 – 666, 2010.

[13] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing

Systems, 2001, pp. 849–856.

[14] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bulletin of the

Calcutta Mathematical Society, vol. 35, pp. 99–109, 1943.

[15] C. Canali and R. Lancellotti, “Automatic virtual machine clustering
based on Bhattacharyya distance for multi-cloud systems,” in Proc.

of International Workshop on Multi-cloud Applications and Federated

Clouds, Prague, Czech Republic, Apr. 2013, pp. 45–52.

[16] H. Abdi and L. Williams, “Principal component analysis,” Computa-

tional Statistics, 2010, in press.

[17] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A Comparison of
Extrinsic Clustering Evaluation Metrics Based on Formal Constraints,”
Journal of Information Retrieval, vol. 12, no. 4, pp. 461–486, Aug.
2009.

[18] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang, “Net-cohort:
detecting and managing VM ensembles in virtualized data centers,”
in Proc. of the 9th international conference on Autonomic computing

(ICAC ’12), ser. ICAC ’12. San Jose, California, USA: ACM, 2012,
pp. 3–12.

