
Distributed architectures for high performance and

privacy-aware content generation and delivery

Claudia Canali

University of Modena and Reggio Emilia

canali.claudia@unimo.it

Michele Colajanni

University of Modena and Reggio Emilia

colajanni.michele@unimo.it

Riccardo Lancellotti

University of Modena and Reggio Emilia

lancellotti.riccardo@unimo.it

Abstract

The increasing heterogeneity of mobile client devices

used to access the Web requires run-time adaptations of the

Web contents. A significant trend in these content adapta-

tion services is the growing amount of personalization re-

quired by users. Personalized services are and will be a

key feature for the success of the next generation Web, but

they open two critical issues: performance and profile man-

agement. Issues related to the performance of adaptation

services are typically addressed by highly distributed ar-

chitectures with a large number of nodes located closer to

user. On the other hand, the management of user profile

must take into account the nature of these data that may

contain sensitive information, such as geographic position,

navigation history and personal preferences that should be

kept private.

In this paper, we propose a distributed architecture

for the ubiquitous Web access that provides high perfor-

mance, while addressing the privacy issues related to the

management of sensitive user information. The proposed

distributed-core architecture splits the adaptation services

over multiple nodes distributed over a two-level topology,

thus exploiting parallel adaptations to improve the user per-

ceived performance.

1 Introduction

The increasing need for content personalization is driv-

ing the Web towards a new dimension of interesting features

and related issues that must be addressed by the underlying

infrastructure for Web content generation and delivery. The

conjunction of ubiquitous Web access and Web personal-

ization allows the content providers to offer adaptation ser-

vices that tailor Web resources to the user preferences and

to the capabilities of their client devices. On the other hand,

providing Web access for a plethora of heterogeneous and

mobile client devices requires on-the-fly content adaptation

services, because a pre-generation of formats for any com-

bination of devices and network protocols is simply unfea-

sible. Since most content adaptation services require com-

putationally expensive tasks, much interest of the research

community has been focused on high performance archi-

tectures that are able of guaranteeing efficient and scalable

adaptation services. Different highly distributed architec-

tures [9] have recently emerged as an interesting approach

to provide efficient content generation and delivery for het-

erogeneous and mobile users. To improve the performance

of the offered services by diminishing the response time,

many intermediate architectures such as CDNs propose the

use of server nodes which are located closer to the clients

(the so-called network edge) with respect to the content

provider node.

As the adaptation services must access information about

the user preferences, providing personalized value-added

services implies an accurate management of user profiles

that may contain sensitive information. Preserving the con-

fidentiality of the user profile is and will be a key issue

for the success of the next generation Web. The need for

high performance combined with the necessity of guaran-

teeing an high security standard for sensitive profile infor-

mation often results in a trade-off between distributed and

centralized approaches. Indeed, in a centralized system that

provides content adaptation and delivery, there is no prob-

lem about where to store user profile information, while a

correct management of the user profiles represents a com-

plex task when we consider highly distributed architectures.

The best choice about the various alternatives is unclear

when we consider a distributed infrastructure for person-

alized Web content generation and delivery that is interme-

diate between the clients and the content providers.

The study of solutions that combine performance and

privacy issues for the delivery of personalized Web contents

represents a highly innovative topic. Performance and pri-

vacy issues have been addressed separately even by the re-

cent literature (e.g., [4, 3, 7] for performance and [8, 10]

for privacy), while we claim that the design of high perfor-

mance architectures for Web adaptation services should be

related to the solutions for a correct management of the user

profiles.

The main contribution of this paper is the proposal of

an intermediate distributed architecture for Web content

generation and delivery, namely distributed-core architec-

ture, that provides high performance from the end-user per-

spective through the distribution of adaptation services over

multiple nodes. The distributed-core architecture also guar-

antees an adequate level of privacy in the management of

sensitive information contained in the user profiles. The

proposed architecture is based on a two-level topology that

distinguishes between a limited number of powerful, well-

connected and trusted core nodes and a large number of

simpler edge nodes located close to the clients [5]. Since

a client request typically refers to multiple resources (the

top-level document, called container, and multiple embed-

ded resources that can be multimedia objects) possibly re-

quiring different kind of adaptation, the parallel execution

of the onerous adaptation services on multiple nodes be-

longing to both the distributed-core and core levels allows

to noticeably improve the user-perceived response time. In

this paper, we evaluate the performance of the distributed-

core architecture through a comparison with an architecture,

namely centralized-core, that is based on the same topol-

ogy but does not exploit a high degree of distribution of the

adaptation services over the nodes of the architecture.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses the main issues related to the mapping of

adaptation services over the nodes of a two-level topology.

Section 3 describes the distributed-core architecture, while

Section 4 presents a performance evaluation of the proposed

architecture through real prototypes. Section 5 discusses

some related work. Finally, Section 6 contains some con-

cluding remarks.

2 Adaptation services in a two-level topology

The term adaptation service is used to define a plethora

of services that range from simple data compression to

semantic-aware handling of contents, and simple services

can be combined to provide more effective access to the

Web contents from herogeneous and mobile clients. The

growing amount of personalization required by the users

leads towards adaptation services that imply that some per-

sonal information is added to the user request for the gener-

ation of the resource to be delivered. There are several ways

to transfer information about user preferences. For exam-

ple, it may be explicitly communicated by the user through a

form, or by the client device together with the request (e.g.,

by means of cookies or HTTP headers). Alternatively, this

information may be inferred by the present and/or past user

behavior or protocol. In other instances, the system infras-

tructure may get it from additional support, as in the case of

location-based services. For complex adaptation services, it

is considered unpractical to require the client to supply to

the system all user profile information with every request.

The most common approach is to provide only a small user

identifier (e.g., a UserID cookie) and to use this information

to retrieve the user profile that has been previously stored in

the infrastructure for adaptation and delivery.

The information contained in the user profile may be

classified in two parts: we call sensitive the information that

are considered confidential by the large majority of the users

and impersonal the information that can be made known. In

this paper, we consider two main categories of content adap-

tation services, depending on whether or not the services

require sensitive information contained in the user profile.

Examples of adaptation services that typically do not re-

quire any sensitive information include virus scanning, that

can use just a flag for enabling/disabling the service, and

resource transcoding, usually based on the client device ca-

pabilities more than on the user preferences. On the other

hand, services such as location-based personalization, adap-

tation to the user navigation style or adaptation to the user

interests usually require profile information that should be

kept private [9].

The need or not for sensitive information in a content

adaptation service limits the possible alternatives when we

have to distribute the adaptation services over the nodes of

an intermediate architecture for efficient content generation

and delivery.

Throughout this paper, we consider a distributed infras-

tructure for content adaptation that is based on a two-level

topology where the server nodes are classified as edge and

core nodes (Figure 1).

The edge level is characterized by a large amount of

nodes (shown as boxes drawn with a thin line in the fig-

ure), that are located close to the network edge. This means

that edge nodes are usually placed in the points of presence

of ISPs with the goal of limiting the network delays in the

response time of a client request. Using a set of front-end

Content provider

 servers

Key

Clients

Edge node

Core node

Two-level

topology

Network edge

Figure 1. Two-level topology for adaptation

and delivery.

nodes closer to the clients is already a common choice for

letting mobile clients access Web-based services. It seems

then worthy to investigate the convenience of adding novel

functionalities to the edge nodes in addition to Internet ac-

cess and caching.

The core level of the distributed infrastructure consists

of a smaller number of powerful nodes (thick boxes in Fig-

ure 1). To limit communication costs especially with the

edge nodes, core nodes are placed in well connected lo-

cations, which means in Autonomous Systems with a high

peering degree. It is worth to note that the reduced number

of replicas of core nodes (in the reality, one or two order of

magnitude lower than the number of edge nodes) and their

placement in strategic locations allows us to simplify many

system organization and management aspects.

In previous papers, we have demonstrated that a two-

level topology allows to better address the privacy issues

arising from the management of user profiles in a highly

personalized context with respect to traditional flat or hi-

erarchical architectures [5, 9]. Indeed, it is practically un-

feasible to provide a high level of security for every node

in a distributed system that may contain up to thousands of

nodes, while we need to guarantee high security standards

for the server nodes that store user profiles containing sen-

sitive information. If we refer to the two-level topology, we

can observe that the core nodes are suitable for the manage-

ment of user profiles due to their limited number and pro-

tected location. On the other hand, the edge nodes are not

suitable for handling sensitive profile information for two

reasons: first, their high degree of replication may cause

data inconsistency problems; second, the user profile pri-

vacy cannot be guaranteed when the related files are spread

among the nodes of thousands of ISP points of presence

around the world.

From the previous considerations, we can conclude that

the nature of profile information necessary to the personal-

ization services and the security level of the server nodes

offer important limits to the mapping of the adaptation ser-

vices among the nodes of the two-level topology, because

personalization services requiring access to sensitive infor-

mation cannot reside on nodes that do not guarantee high

security standards. Hence, to preserve the privacy of sen-

sitive profile information we need to place personalization

services that require sensitive data only on the core nodes.

On the other hand, content adaptation services not requiring

sensitive information, such as resource transcoding or virus

scanning, can be carried out on the edge nodes.

After having identified the existing constraints about the

possible mapping of adaptation services over the nodes of

the two-level topology, we have to analyze how to provide

high performance in the service of client requests involv-

ing personalization services. Since a client request typi-

cally refers to multiple Web objects (the base HTML con-

tainer and the embedded resources) that may require differ-

ent adaptation services, the key issue to achieve high perfor-

mance from the perspective is to exploit concurrent adapta-

tion tasks distributed on multiple nodes. In the next section

we present the distributed-core architecture that provides a

solution for distributing adaptation tasks on the nodes of a

two-level topology.

3 Distributed-core architecture

The distributed-core architecture aims to distribute the

adaptation services over multiple nodes belonging to both

the core and the edge levels. The goal is to provide high

user-perceived performance through a twofold action. First,

the distribution of adaptation services over multiple nodes

allows to exploit parallel adaptations of the different objects

composing a Web resources (the HTML container and the

embedded resources). Second, the use of the nodes of the

edge level to perform adaptation allows to move services

close to the clients.

Since adaptation services require access to user profile

information, the distributed-core architecture needs a mech-

anism for distributing the profile among all the nodes re-

sponsible for the adaptation of the resources referring to a

client request.

Let us now describe our solution to the problem of dis-

tributing the adaptation services and the user profile infor-

mation necessary to perform the adaptation over the nodes

of the distributed-core architecture.

The user profiles necessary for personalization services

are stored on the trusted core nodes, since the edge nodes

cannot guarantee adequate security standards as discussed

in Section 2; in particular, we assume that each user is man-

aged by one core node, that is called authoritative node for

that user. The user profiles are mapped on the core nodes

through a hash function H(x), that receives a (unique) user

ID and returns a core node identifier k = H(ID), where

k ∈ [1, . . . , n], and n is the number of core nodes of the

two-level topology. Our experience with MD5-like hash

functions demonstrates that H(x) provides a fair load shar-

ing of the users among the core nodes. Any node of the

distributed-core architecture implements the same H(x)
function, hence, any node is able to identify the core node

that is authoritative for a certain user. Since the core nodes

need to access user profile information to perform con-

tent adaptation, we introduce a caching service on the core

nodes that allows to store a local copy of the user profiles,

even if the primary copy is maintained on the authoritative

core nodes.

We let the core nodes to take all decisions about the dis-

tribution of the adaptation services over the nodes of the

distributed-core architecture, because each core node man-

ages a set of complete user profiles and, consequently, is

aware of the differentiation between sensitive and imper-

sonal profile information. The decision is driven by the

classification of the user profile information: the adapta-

tion services requiring sensitive user information are split

among the core nodes, while the adaptation services requir-

ing only impersonal information are split among the edge

node contacted by the client and the core nodes. We chose

to distribute part of the adaptation services not requiring

sensitive information on the core nodes to avoid the risk of

system bottlenecks at the edge node, since some of such ser-

vices may be computationally very expensive (e.g., device-

oriented transcoding) [4]. It is worth to note that the edge

nodes need to be provided with the impersonal part of the

profile to carry out the adaptation services they are respon-

sible for.

For the distribution of the adaptation services on the

nodes of the architecture we simply use a round robin algo-

rithm. The use of the round robin algorithm is well known

in the field of Web clusters distributed over a local area

network; it has been also proposed for geographically dis-

tributed Web systems [6], but its use is typically limited to

Web servers systems instead of intermediary-based archi-

tectures. Due to the limited number and the well-connected

locations of the core nodes, it is feasible to consider a load-

aware context where the core nodes asynchronously com-

municate to each other information about their current load.

In this case, it is possible to use a weighted round robin

algorithm based on the server loads to distribute the adapta-

tion services on the core nodes. It is interesting to note that

the use of a weighted round robin algorithm may counter-

balance potential hot spots due to a not perfect load balanc-

ing of the hash function H(x) that partitions the user space

among the core nodes. Indeed, an authoritative node that

is overloaded due to operations related to adaptation ser-

vice distribution may be associated with a minor number of

adaptation tasks with respect to other core nodes. However,

the study of a weighted round robin algorithm is not directly

addressed in this paper.

We describe the details of this mechanisms through the

Figure 2 that represents the service of a client request in

the distributed-core architecture. The operations related to

the service of the base HTML container and the embedded

resources are shown in separate images. The first request is-

sued by a client for accessing a Web resource is the request

for the HTML container, which is described in Figure 2(a).

When the edge node receives the client request (step 1), it

extracts the user ID and applies the hash function H(x) pre-

viously described to identify the authoritative core node that

owns the user profile. The request is forwarded to the au-

thoritative node (step 2) that fetches the HTML page from

the content provider server (steps 3 and 4) and, if required,

carries out content adaptation on the HTML document (step

(5) - numbers within brackets are optional steps). Then, the

authoritative core node considers the Web objects embed-

ded within that page and the classification of the user profile

information. From this analysis, the authoritative core node

can decide how to distribute the adaptation of the embedded

objects among the core nodes of the architecture, including

itself, and the edge node contacted by the client (step 6).

The information about the decision is piggybacked in the

response for the HTML container, that is sent back to the

edge node (step 7) and then to the client (step 8). In this

way, the edge node knows which nodes are responsible for

the adaptation of the different object embedded within that

page and will be able to forward to the appropriate node the

subsequent requests coming from the client. The user pro-

file information that is required for content adaptation at the

edge node is also communicated through the response for

the first file.

The sequence of the steps for managing requests for re-

sources that have to be adapted on the edge node is de-

scribed in Figure 2(b): the client request is received by

the edge node (step 1) which fetches the resource directly

from the content provider server (steps 2 and 3). Since the

user profile information has been already copied on the edge

1

3

2

4

Content provider

 server

Client

(5),6

7

Two-level

topology

8

(a)

Impersonal profile

fragment

Key

Edge node

Core node Sensitive profile

fragment

HTML

container

Embedded

resource

Adaptation service

mapping information

1

32

Content provider

 server

Client

4

5

Two-level

topology

(b)

1

3

2

4

Content provider

 server

Client

5

6
Two-level

topology

7

2

(2a)

 5

(2b)

6

3

4

(c)

Figure 2. Request service in the distributed-core architecture

node, the content adaptation is carried out immediately on

the edge node (step 4) before sending the adapted resource

back to the client (step 5).

The case of requests involving adaptation on the core

nodes is described in Figure 2(c). After receiving the client

request for an embedded resource (step 1), the edge node

contacts the core node associated to that resource on the

basis of the information received with the response for the

HTML container (step 2). At this point we may have two

possible cases. If the contacted core node is the same node

that manages the profile for the user, then it certainly owns

the profile information necessary to perform adaptation.

Otherwise, the node has to check if a copy of the profile

is present in the local cache (step (2a)); if the node does not

own the profile, it retrieves the user information through a

direct request to the core node responsible for that user (step

(2b)), then caches a copy of the profile. Now the core node

can fetch the Web resource from the content provider server

(steps 3 and 4) and carry out the adaptation (step 5). Finally,

the adapted resource is sent back to the edge node (step 6)

and then to the client (step 7).

4 Experimental results

In this section we present a performance evaluation of

the distributed-core architecture for ubiquitous Web access.

To measure the performance gain achievable by exploiting

parallel adaptation tasks in the service of a client request, we

compare the distributed-core architecture with a simplified

variant, namely centralized-core architecture, based on the

same two-level topology.

The centralized-core architecture distributes the adapta-

tion services among two only nodes: the edge node con-

tacted by the client and the core node responsible for the

user profile that issued the request. To preserve the privacy

of sensitive data, only the adaptation services requiring im-

personal user information can be carried out on the edge

node.

To perform a fair comparison between the distributed-

core and the centralized-core architectures, we use the same

mechanism to distribute the adaptation tasks among edge

and core nodes: all the adaptation services requiring sen-

sitive information are carried out on the core node, while

the services based on impersonal data are divided between

the edge and the core nodes to avoid bottlenecks at the edge

node. It is worth to note that in the distributed-core archi-

tecture the edge node contacted by the client is responsible

for the adaptation of 1/n of the embedded resources not re-

quiring sensitive information, where n is the number of the

core nodes. Similarly, in the centralized-core architecture

the edge node is responsible for carrying out the half of the

adaptation tasks not involving sensitive information.

To evaluate the performance of the distributed-core and

centralized-core architectures we implemented two proto-

types based on the popular Apache Web server version

2.0 [1]. The profile management software is written in Perl

and is processed by the Web server using the mod perl mod-

ule [13]. This choice allows us to combine the flexibility of

an high level programming language with the efficiency of

an Apache module that can interact with the Web server in-

ternals. The user profiles are stored as XML files that are

accessed through the profile management software layer.

To exercise our prototypes, we use a workload model

based on traces collected from a real Web site. HTML re-

sources contain embedded objects ranging from a minimum

of 2 to a maximum of 18, with a mean value of 10. The

mean size of a single embedded object is 8.5 KB. The ser-

vice times of the content adaptation services are character-

ized by heavy-tailed distributions, with 140 and 350 ms for

median and 90-percentile, respectively. We assume that the

time of an adaptation service does not change if the service

is performed on an edge or a core node.

We set up a system with client nodes running the load

generator httperf [11]. The two-level architecture consists

of 8 edge nodes and 5 core nodes that are equipped with

our prototypes. Another node hosts the Web server with

the original Web resources. The client and the nodes of the

two-level architecture are connected through a fast Ethernet

network, while the Web server is placed in a remote loca-

tion. The clients issue requests for 3000 pages (and related

embedded objects) at the rate of 5 pages per second. The

client requests are evenly distributed among all edge nodes.

For our performance evaluation, we compare the

centralized-core architecture with the distributed-core ar-

chitecture. For the distributed-core architecture we con-

sider various scenarios that differ for the number of core

nodes used to distribute the adaptation services related to

a client request for a page (and related embedded objects).

Figure 3 shows the 90-percentile of the page response time

for the centralized-core and distributed-core architectures

under the different scenarios. In particular, the x-axis re-

ports the increasing number of core nodes used by the core

architecture for the distribution of the adaptation tasks.

From Figure 3 we observe that the distributed-core ar-

chitecture allows to achieve a significant performance gain

over the centralized-core architecture under all the consid-

ered scenarios, except for the case where only one core node

is used: in this case the adaptation tasks are divided in an

identical way between the nodes of the two architectures

leading to similar page response times. When a major num-

ber of core nodes is considered, the 90-percentile of the re-

sponse time for the distributed-core architecture decreases

as the number of the core nodes grows. The distributed-

core architecture allows to reduce the page response time

by exploiting parallel executions of the required adaptation

tasks, thus achieving a performance gain up to the 74% of

the 90-percentile of the response time in the case of 5 core

nodes.

These results confirm our intuition that the distribution

of the adaptation services over multiple nodes of the inter-

mediate architecture allows to achieve a significant perfor-

mance gain, especially in a high personalized context where

Figure 3. 90-percentile of the page response

time

adaptation typically requires computationally expensive op-

erations.

It is worth to note that, passing from one to two core

nodes, the distributed-core architecture provides a perfor-

mance gain of 35% over the centralized-core approach, as

shown in Figure 3. If we consider further increasings in the

number of the core nodes used to distribute the adaptation

services, we observe more limited performance improve-

ments (13% passing from 4 to 5 core nodes). This result

is motivated by a twofold reason. First, the positive impact

of an additional node on the load sharing is less effective

if we already distribute the adaptation services over several

nodes. Second, the overhead introduced by the mechanism

for distributing adaptation services over multiple nodes in-

creases as the number of nodes growths, thus reducing the

performance gain achievable over the centralized-core ap-

proach.

5 Related work

The ubiquitous Web access has been recognized in liter-

ature as a fundamental challenge by multiple authors [17,

15]. Multiple proposals for content adaptation services are

present in literature, both in the field of simple Web content

transcoding [7] and in the case of more complex pervasive

computing applications [14, 2]. However, such studies fo-

cus mainly on the heterogeneity of client devices, without

taking into account the issues related to the privacy of sen-

sitive information contained in the user profiles. A note-

worthy example of these proposals is a peer-to-peer con-

tent adaptation system [16], called Tuxedo, which allows

ubiquitous Web access providing both personalization and

transcoding services, but the study does not evaluate in deep

detail the issues arising from the distribution of sensitive in-

formation among untrustworthy nodes.

The importance of providing privacy in the user pro-

file management has been pointed out recently in litera-

ture [8, 10]. The need of taking into account privacy guar-

antees in the design of scalable distributed architectures is

confirmed by P3P (Platform for Privacy Preferences) [12],

a W3C proposal that suggests a mechanism for Web sites

to encode their privacy policies in a standardized format

that can be easily retrieved and interpreted by user agents.

However, these studies are more tailored to a server-side

approach for the generation of personalized Web content

rather than to the intermediary-based model for Web con-

tent adaptation considered in this paper.

6 Conclusions and future work

The design of architectures for the delivery of highly per-

sonalized Web contents has to address two critical issues:

the user-perceived performance and a correct management

of the sensitive information that may be contained in the

user profiles.

In this paper we proposed a distributed architecture,

namely distributed-core architecture, that distributes adap-

tation services over multiple nodes of a two-level topol-

ogy. The distributed-core architecture provides high perfor-

mance by exploiting parallel executions of the adaptation

tasks, addressing at the same time the privacy issues re-

lated to the management of sensitive information. We eval-

uate the performance of the distributed-core architecture

trough the comparison with a simplified variant, namely

centralized-core architecture, that is based on the same two-

level topology, but does not exploit a high degree of dis-

tribution of the adaptation services over the nodes of the

architecture. Our experimental evaluation confirms that

the distributed-core architecture allows to achieve a perfor-

mance gain up to the 74% of the 90-percentile of the re-

sponse time over a less distributed approach.

The results of this study suggests future research direc-

tions. We plan to study in deeper details the overhead intro-

duced in our architecture by the management of user pro-

files. In particular, the overhead due to profile management

can be critical in a system that updates user profile infor-

mation in a dynamic way. Another issue that deserves fur-

ther investigation is the study of load sharing mechanisms

for the distribution of the adaptation services over the dis-

tributed nodes of the architecture.

References

[1] The apache software foundation: Apache, 2005.

http://www.apache.org/.

[2] P. Bellavista, A. Corradi, and C. Stefanelli. The ubiquitous

provisioning of internet services to portable devices. IEEE

Pervasive computing, 2002.

[3] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. De-

vice independence and the Web. IEEE Internet Computing,

6(5):81–86, Sept./Oct. 2002.

[4] C. Canali, V. Cardellini, and R. Lancellotti. Content adap-

tation architectures based on squid proxy server. Word Wide

Web Journal, Mar. 2006.

[5] C. Canali, S. Casolari, and R. Lancellotti. Distributed sys-

tems to support efficient adaptation for ubiquitous web. In

Proc. of the 2005 International Conference on High Perfor-

mance Computing and Communications (HPCC 2005), Sor-

rento, Italy, September 2005.

[6] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu.

The state of the art in locally distributed web-server systems.

ACM Comput. Surv., 34(2):263–311, 2002.

[7] C. S. Chandra, S. Ellis and A. Vahdat. Application-level

differentiated multimedia Web services using quality aware

transcoding. IEEE J. on Selected Areas in Communication,

18(12):2544–2465, Dec. 2000.

[8] R. K. Chellappa and R. G. Sin. Personalization versus pri-

vacy: An empirical examination of the online consumer’s

dilemma. Information Technology and Management, 6(2-3),

April 2005.

[9] M. Colajanni and R. Lancellotti. System architectures for

web content adaptation services. IEEE Distributed Systems

online, May 2004.

[10] R. Hull, B. Kumar, D. Lieuwen, P. F. Patel-Schneider,

A. Sahuguet, S. Varadarajan, and A. Vyas. Enabling context-

aware and privacy-conscious user data sharing. In Proc. of

2004 IEEE International Conference on Mobile Data Man-

agement (MDM’04), 2004.

[11] D. Mosberger and T. Jin. httperf - a tool for measuring web

server performance. In Proc. of Workshop on Internet Server

Performance, Wisconsin, Jun 1998.

[12] Platform for privacy preferences project, 2005.

http://www.w3.org/P3P.

[13] The apache software foundation: mod perl, 2005.

http://perl.apache.org/.

[14] H. Rao, Y. Chen, D. Chang, and M. Chen. imobile: a proxy-

based platform for mobile services. In Proc. of the 1st work-

shop on wireless mobile Internet (WMI2001), 2001.

[15] D. Saha and A. Mukherjee. Pervasive computing: A

paradigm for the 21st century. IEEE Computer, 36(3), Mar.

2003.

[16] W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: a peer-

to-peer caching system. In Proc. of PDPTA03, Las Vegas,

NV, June 2003.

[17] G. C. Vanderheiden. Anywhere, anytime (+ anyone) access

to the next-generation www. Computer Networks and ISDN

Systems, 8(13), Sep. 1997.

http://www.apache.org/
http://www.w3.org/P3P
http://perl.apache.org/

	Introduction
	Adaptation services in a two-level topology
	Distributed-core architecture
	Experimental results
	Related work
	Conclusions and future work

