
Noname manuscript No.
(will be inserted by the editor)

Exploiting Ensemble Techniques for Automatic Clustering
of Virtual Machine Clustering in Cloud Systems

Claudia Canali · Riccardo Lancellotti

the date of receipt and acceptance should be inserted later

Abstract Cloud computing has recently emerged as a new paradigm to provide com-
puting services through large-size data centers where customers may run their appli-
cations in a virtualized environment. The advantages of cloud in terms of flexibility
and economy encourage many enterprises to migrate from local data centers to cloud
platforms, thus contributing to the success of such infrastructures. However, as size
and complexity of cloud infrastructures grow, scalability issues arise in monitoring
and management processes. Scalability issues are exacerbated because available solu-
tions typically consider each Virtual Machine (VM) as a black box with independent
characteristics, which is monitored at a fine-grained granularity level for management
purposes, thus generating huge amounts of data to handle. We claim that scalability
issues can be addressed by leveraging the similarity between VMs in terms of re-
source usage patterns. In this paper, we propose an automated methodology to cluster
similar VMs starting from their resource usage information, assuming no knowledge
of the software executed on them. This is an innovative methodology that combines
the Bhattacharyya distance and ensemble techniques to provide a stable evaluation of
similarity between probability distributions of multiple VM resource usage, consid-
ering both system- and network-related data. We evaluate the methodology through
a set of experiments on data coming from an enterprise data center. We show that our
proposal achieves high and stable performance in automatic VMs clustering, with
a significant reduction in the amount of data collected which allows to lighten the
monitoring requirements of a cloud data center.

Keywords clustering; clustering ensemble; bhattacharyya distance; cloud comput-
ing

Department of Engineering “Enzo Ferrari”
University of Modena and Reggio Emilia
E-mail: {claudia.canali, riccardo.lancellotti}@unimore.it

1 Introduction

In the few last years, the rapid growth in demand for modern applications combined
with the shift to the Cloud computing paradigm have led to the establishment of
large-scale virtualized data centers following the so-called Infrastructure as a Ser-
vice (IaaS) paradigm. Modern virtualized data centers host several customers appli-
cations, where each application consists of different software components (e.g., the
tiers of a multi-tier Web application). In a virtualized data center, each physical server
hosts multiple virtual machines (VMs) running different software components with
complex and heterogeneous resource demand behavior. The growing popularity of
the IaaS paradigm is a catalyst for the migration from traditional enterprise data cen-
ters to IaaS cloud systems. This migration process is testified by the success of cloud
environments characterized by long-term commitments, where customers outsource
their data centers to a cloud provider purchasing VMs for extended periods of time
(for example, using the Amazon so-called reserved instances). This scenario is and
is expected to be a significant part of the cloud ecosystem in the next future [13].

Due to the rapid increase in size and complexity of IaaS infrastructures, the pro-
cesses of monitoring and managing cloud data centers are becoming challenging
tasks. The monitoring process presents scalability issues due to the amount of data
to collect and store when a large number of VMs is considered, each with several
resources (e.g., CPU, memory, network), which are monitored with high sampling
frequency [2]. Management strategies assume that each VM is a stand-alone object,
whose behavior is independent from the other VMs of the cloud infrastructure, and
take decisions on the basis of information coming from the resource monitoring sys-
tem, thus not scaling well due to the large amount of data to analyze [30].

A typical approach to address the scalability issues about monitoring and manage-
ment of a cloud data center is to reduce the problem size. Available solutions tend to
reduce the number of VM resources that are taken into account, typically considering
only CPU-related information [4,16,30]. However, this approach is likely to suffer
from important drawbacks, because limiting the monitoring to the CPU resource may
not be sufficient to support VM consolidation when I/O bound or network bound ap-
plications are involved. This motivates the need of a scalable collection of data about
multiple resources to support management in cloud data centers [24].

We argue that the scalability of monitoring and management in cloud infrastruc-
tures may be addressed by leveraging the similarity between VM behaviors, consid-
ering VMs not as stand-alone objects but as members of classes composed by ob-
jects which are running the same software component (e.g., Web servers or DBMS).
Once identified classes of similar VMs, we may select a few representative VMs for
each class and carry out monitoring at a detailed level only on these representatives.
In this way, the amount of data collected can be easily reduced with respect to the
fine-grained monitoring of every single VM, thus improving the scalability of cloud
monitoring and management. This approach is particularly advantageous in cloud
scenarios characterized by long-term commitments, where customer VMs tend to
change the software component they are running with a relatively low frequency, in
the order of days or weeks.

The main contribution of this paper is the proposal of an automated methodology
to cluster together similar VMs in a IaaS clud data center on the basis of their resource
usage. Our approach is consistent with the IaaS vision [31,36] as it does not require
any direct knowledge of the application logic inside a software component, but it only
relies on the information about OS-level resource usage of each VM. Furthermore, we
aim to guarantee high performance in the VM clustering and, even more important,
we aim to guarantee stable performance, that is we ensure that the clustering outcome
is scarcely dependent on the parameters of the methodology.

The proposed methodology exploits the distance of Bhattacharyya [10], a statisti-
cal technique measuring the similarity of different discrete probability distributions,
to define the similarity between VMs and determine which VMs are following the
same behavioral patterns. A further qualifying point of our proposal is the use of
clustering ensemble techniques [32,18] to improve the stability of the methodology
performance by integrating a quorum-based mechanism into the clustering process.

To the best of our knowledge, the proposal of techniques for automatically clus-
tering VMs with similar behavior based on multiple resources usage is a new prob-
lem, only recently analyzed in [7,6,8]. However, solutions exploiting the correlation
between the resource usage to identify similarities in VMs behavior [7,6] provide
poor performance in presence of short time series and in case some VMs remain idle
for short periods of time during the monitoring process. On the other hand, prelimi-
nary studies based on the Bhattacharyya distance [8] show performance that depends
heavily on the parameters involved in the computation of such distance. Our proposal
outperforms all these solutions and provides a major advantage in the performance
stability with respect to the previous results. We apply the proposed methodology to
a dataset coming from an enterprise virtualized data center with VMs running Web
servers and DBMS software. We show that our methodology can achieve high perfor-
mance in clustering VMs, with a reduction in the amount of collected data samples
by one order of magnitude. Furthermore, we demonstrate that exploiting ensemble
techniques to merge together multiple clustering solutions is of key importance to
obtain stable performance in the clustering process.

The remainder of this paper is organized as follows. Section 2 presents the ref-
erence scenario and motivates our proposal, while Section 3 describes the proposed
methodology for automatically clustering VMs in a cloud environment. Section 4 de-
scribed the experimental testbed used to evaluate our methodology, while Section 5
presents the case study used to evaluate our methodology and describes the results
of our experiments. Section 6 discusses the related work and Section 7 concludes the
paper with some final remarks.

2 Motivation and reference scenario

In this section we describe how the proposed approach can be integrated into IaaS
cloud systems. In a complex scenario such as a IaaS cloud data center, resource man-
agement strategies are needed to guarantee an efficient use of the system resources,
while avoiding overload conditions on the physical servers. We consider for the cloud
system a management strategy which consists of two mechanisms, as in [17]: (a) a

reactive VM relocation that exploits live VM migration when overloaded servers are
detected [37]; (b) a periodic consolidation task that places customer VMs on as few
physical servers as possible to reduce the infrastructure costs and avoid expensive
resource over provisioning [3,29].

The consolidation task is carried out periodically with the aim to produce an opti-
mal (or nearly optimal) VM placement which reduces the number of shared physical
servers. Existing consolidation decision models typically try to predict VM workload
over a planned period of time (e.g., few hours) based on resource usage patterns ob-
served on past measurements, that are usually carried out with a fine-grained granu-
larity (e.g., 5-minute intervals) [3,29]. Since consolidation strategies usually consider
each VM as a stand-alone object with independent resource usage patterns, detailed
information has to be collected with high sampling frequency about each VM, thus
creating scalability issues for the monitoring system.

Fig. 1 Cloud system

The proposed methodology aims to address cloud monitoring scalability issues
by automatically clustering similar VMs. The main goal is to cluster together VMs
running the same software component of the same customer application (e.g., VMs
belonging to the same tier of a Web application), and therefore showing similar be-
haviors in terms of resource usage. For each identified class, only few representative
VMs are monitored with fine-grained granularity to collect information for the pe-
riodic consolidation task, while the resource usage of the other VMs of the same
class is assumed to follow the representatives behavior. On the other hand, the non
representative VMs of each class are monitored with coarse-grained granularity to
identify behavioral drifts that could determine a change of class. At the same time,
sudden changes leading to server overload are handled by the reactive VM relocation
mechanism. This approach allows to significantly reduce the amount of information
collected for periodic consolidation strategies.

The process of VM clustering is carried out periodically with a frequency that
allows to cope with changes in the VM classes. We recall that our reference scenario

is a cloud environment characterized by long-term commitment between cloud cus-
tomers and providers, where we can assume that the software component hosted on
each VM changes with a relatively low frequency in the order of weeks. Hence, clus-
tering can be carried out with a low periodicity (e.g., once a week). Furthermore, the
clustering may be triggered when the number of exceptions in VMs behavior exceeds
a given threshold, where for exception we mean newly added VMs or clustered VMs
that changed their behavior with respect to the class they belong to. Anyway, a pre-
cise determination of the activation period or strategy of the clustering process is out
of the scope of this paper.

Figure 1 depicts the reference scenario. The scheme represents a cloud data cen-
ter where each physical server, namely host, runs several VMs. On each host we have
an hypervisor, with a monitor process that periodically collects resources usage time
series for each VM. The collected data are sent to the time series aggregator running
on the host. The time series aggregator selects the data to be communicated (with
different periodicity) to the clustering engine, which executes the proposed method-
ology to automatically cluster VMs, and to the cloud controller, which is responsible
for running the consolidation strategy. On each host we have also a local manager,
which performs two tasks. First, it is responsible for taking decisions about live VM
migration to trigger in case of host overload [37]. Second, it executes the consolida-
tion decisions periodically communicated by the cloud controller.

We now describe the dynamics occurring in the considered cloud system to sup-
port VM clustering and server consolidation. The process of VM clustering starts
from the collection of time series describing the resources usage for each VM over
a certain period of time. The monitor processes are responsible for this data collec-
tion. Then, the time series aggregators of each host send the data to the clustering
engine, which executes the proposed methodology with the aim to cluster together
VMs belonging to the same customer application and running the same software
component. Once the clustering is complete, few representative VMs are selected
for each class. It is worth to note that more than two representatives (at least three)
should be selected for each class, due to the possibility that a selected representative
unexpectedly changes its behavior with respect to its class. This choice allows us to
exploit quorum-based techniques to cope with byzantine failures of representative
VMs [9]: when only one VM is changing its behavior, we can still use the remaining
two representatives to identify the misbehaving VM and to preserve a description of
the cluster.

The information on VM classes and selected representatives are sent to the time
series aggregators on each host and to the cloud controller for periodic consolidation
task. The time series aggregators selectively collect the resource time series of the
representative VMs of each class, then send the data to the cloud controller. This
latter component carries out the consolidation task, exploiting the resource usage of
the representative VMs to characterize the behavior of every VM of the same class.
The consolidation decisions are finally communicated to the local managers on each
host to be executed.

Let us now provide a motivating example for our proposal. We consider a multi-
tier Web application characterized by a high degree of horizontal replication. The
application is deployed on 110 VM, divided in front-end Web servers and back-end

DBMS servers. We consider that this application is going to be migrated from an
enterprise data center to a IaaS cloud system. This scenario is a typical case where
moving to a IaaS platform involves long term commitments, that is the VM are un-
likely to change frequently in typology. As the cloud provider has no knowledge on
the software component running in each VM, it is necessary to monitor every VM
at fine-grained granularity to accomplish periodic consolidation tasks. Assuming that
monitoring considersK resources for each VM, which are collected with a frequency
of 1 sample every 5 minutes, we have to manage a volume of data 288 ·K samples
per day per VM. Considering 110 VMs, the total amount of data is in the order of
3.2×104·K samples per day. The proposed methodology automatically identifies two
sets of similar VM and monitors at the granularity of 5 minutes only a few representa-
tive VMs per class, while the remaining VMs can be monitored with a coarse-grained
granularity, for example of 1 sample every few hours. Assuming to select 3 represen-
tatives for each of the 2 VM classes the amount of data to collect after clustering
is reduced to 17.2 × 102 · K samples per day for the class representatives; for the
remaining 104 VMs, assuming to collect one sample of the K metrics every 6 hours
for VM, the data collected is in the order of 4.2 × 102 ·K samples per day. Hence,
we observe that our proposal may reduce the amount of data collected for periodic
consolidation by nearly a factor of 15, from 3.2× 104 ·K to 21.4× 102 ·K.

As a final note, it is worth to observe that Web applications are not the only
type of applications that can benefit from our approach: every information system
characterized by highly replicated components can benefit from our proposal when is
migrated from a traditional data center to a IaaS cloud platform.

3 Methodology

In this section we describe the methodology to automatically cluster VMs in a cloud
data center on the basis of their resource usage.

To measure the behavior similarity between VMs, the proposed methodology ex-
ploits the Bhattacharyya distance. This statistical technique determines the similarity
between two probability distributions: in our case, we consider the probability distri-
butions of the usage samples of the considered resources, that we will call metrics.
We should consider that the Bhattacharyya distance provides per-metric distances
between VMs. Hence, the similarity of different VMs is represented through a multi-
dimensional distance, leaving open the issue of how to merge such information for
the clustering of similar VMs. We address this issue through a technique based on
clustering ensemble, which allows us to merge information about multiple metrics
and improve the stability of the methodology performance with respect to its design
parameters. The clustering ensemble approach will be compared against an alterna-
tive approach, proposed by the authors in [8] and described later in this section, that
reduces the dimensionality of the per-metric set by mapping them into an euclidean
space.

The main steps of the proposed methodology are outlined in the main branch of
Figure 2:

– Extraction of a quantitative model describing the VM behavior

– Generation of a set of Bhattacharyya distance matrices representing VMs simi-
larities for the single metrics

– Per-metric clustering of VMs based on the Bhattacharyya distance matrices
– Clustering ensemble to merge the per-metric clustering solutions

Fig. 2 Proposed methodology and alternative approach

The right branch in Figure 2 presents the alternative approach, namely euclidean
clustering, where the per-metric distance matrices are merged into a single distance
matrix using an euclidean space. The matrix is then fed into a final clustering algo-
rithm.

Throughout the remaining of this section we describe in detail each step of the
proposed methodology and of the considered alternative approach.

3.1 Extraction of quantitative model for VM behavior

We now formally define the quantitative model chosen to represent the behavior of
each VM, and discuss a critical design choice involved in this step.

Given a set of N VMs, the first step of the methodology aims at representing the
behavior of each VM n,∀n ∈ [1, N], taking into account for a set of M metrics,
where each metric m ∈ [1,M] represents the usage of a VM resource.

Let (Xn
1 ,X

n
2 , . . . ,X

n
M) be a set of time series, where Xn

m is the vector consisting
of the samples of the resource usage represented by the metric m of the VM n. We
choose to consider the probability density function p(Xn

m) of each time series as
the description of the behavior of metric m on VM n. We represent the probability
function of a finite-length time series through a normalized histogram. The histogram
is composed by bins, each associated to an interval of values the metric can take. Each
bin represents the frequency of samples for the considered interval, that is the fraction
of samples from the time series that fall within the bin interval.

If Bm is the number of bins considered for metric m, the normalized histogram
from the time series Xn

m is a set Hn
m = {hnb,m∀b ∈ [1, Bm]}, where hnb,m is the value

associated to the b-th histogram bin and defined as:

hnb,m =
|{x ∈ Xn

m : x > X l
m(b), x ≤ XU

m(b)}|
|Xn

m|

where |{x ∈ Xn
m : x > X l

m(b), x ≤ XU
m(b)}| is the number of samples in the

interval [X l
m(b), XU

m(b)] and |Xn
m| is the number of samples in the time series. The

upper and lower bounds of the bin b are defined as:X l
m(b) = Xminm+(b−1)∆xm

and XU
m(b) = Xminm + b∆xm, where Xminm is the minimum value of metric m

for every VM, Xmaxm is the maximum value of metric m for every VM, and ∆xm
is the width of each bin for metric m, that is ∆xm = Xminm−Xmaxm

Bm
. Figure 3

provides a graphical example of the above defined histogram. This definition ensures
that for each metric m the number of bins is the same for every VM. This latter
property is fundamental because in the following steps of the methodology we need
to compare same sized histograms referring to different VMs.

Fig. 3 Histogram example

The extraction of the quantitative model raises a critical design choice which may
affect the final outcome of the clustering process, that is the determination of the
number of bins in each histogram. The difficulty in estimating the number of bins is
due to the heterogeneity of the metrics considered in the VM monitoring. As there
is no a universally accepted way to define the “best” number of bins, we consider
three widely adopted rules of thumb for the estimation of the number of bins in the
histograms: the Freedman-Diaconis rule [15], the Scott rule [28] and the square root

rule. The impact of the rule choice on the final outcome of the clustering will be
investigated in the experimental evaluation.

The Freedman-Diaconis rule defines the number of bins as a function of the inter-
quartile range of the data set, that is the difference between 1st and 3rd quartile of
the samples. According to the FD rule Bm = 2 IQR(Xm)

3
√
|Xm|

, where |Xm| is the number

of samples in the time series for metric m and IQR(Xm) is the inter-quartile range
of the time series.

The Scott rule determines the number of bins as a function of the standard devi-
ation of the samples. For this reason, the Scott rule is typically adopted for samples
following a Gaussian distribution. According to the Scott rule, we define the number
of bins as Bm = 3.5σm

3
√
|X|

, where σm is the standard deviation of the samples in the

time series for metric m.
The square root rule is adopted in some software for data management and anal-

ysis, including the popular Excel spreadsheet, and simply defines the number of bins
as the square root of the number of samples, that is Bm =

√
|Xm|.

3.2 Generation of Bhattacharyya distance matrices

The second step of the methodology consists in building a set of distance matrices to
define similarities between VMs starting from the histogram-based representation of
the VM behavior for each single metric.

To build this set of per-metric distance matrices we exploit the Bhattacharyya
distance [5], which is used to measure the similarity between two data sets based
on their probability distribution. The Bhattacharyya distance Dm(n1, n2) computed
according to metric m between two VMs n1 and n2 is defined as follows:

Dm(n1, n2) = −ln(
B∑
b=1

√
hn1

b,m · h
n2

b,m)

where hn1

b,m and hn2

b,m are the b-th bin values in the histograms of metric m for VM
n1 and VM n2, respectively. Since the histograms are normalized, the Bhattacharyya
distance may take values ranging from 0 (identical histograms) to ∞ (histograms
where the product of every pair of bins is 0), as shown in Figure 4.

Fig. 4 Bhattacharyya distance example

The distances between each couple of VMs for any given metric m are organized
in a set of matrices Dm,m ∈ [1,M]. Due to the nature of the Bhattacharyya distance,
each of these distance matrices is symmetrical and the elements on the main diagonal
have zero value.

3.3 Per-metric clustering on distance matrices

This step of the methodology aims to obtain a clustering solution from each per-
metric distance matrix Dm, m ∈ [1,M]. To this aim, we need to transform each
distance matrix Dm into a similarity matrix Sm. This step is carried out by apply-
ing a Gaussian kernel operator, that is a common approach to translate distance into

similarity [12]. Specifically, we define the similarity as si,j = e
−d2i,j
σ2 , where di,j is

an element of a distance matrix and σ is a blurring coefficient of the kernel func-
tion [20], typically set to the value of 0.5. Preliminary analyses on the impact of the
σ coefficient on the clustering results suggest that the choice of this parameter is not
critical for the performance of the clustering algorithms.

To cluster together elements starting from a similarity matrix, traditional algo-
rithms based on coordinate systems (such as k-means or kernel k-means) are not
viable options. On the other hand, spectral clustering is widely adopted in these cir-
cumstances because it is explicitly designed to manage as input a similarity matrix or
a matrix-based representation of graphs [19,27].

The spectral clustering algorithm computes the Laplacian operator from the input
similarity matrix. The eigenvalues and eigenvectors of the Laplacian are then used
to extract a new coordinate system that is fed into a k-means clustering phase [22].
About this last phase of the clustering process, we must recall that the k-means al-
gorithm starts with a random set of centroids. To ensure that the k-means result is
not affected by local minimums, we iterate the k-means multiple times and we com-
pare the ratio between the sum of squares of the distances among elements belonging
to different clusters (inter-cluster) and elements belonging to the same cluster (intra-
cluster). Then, we finally select the best solution across multiple k-means runs, that is
the solution maximizing inter-cluster distances and minimizing intra-cluster distance.

The output of the clustering is one vector Cm for each metric m ∈ [1,M], where
the n-th element cnm is the identifier of the cluster to which the VM n is assigned.

3.4 Clustering ensemble

The final step of clustering ensemble combines the set of M clustering solutions
Cm, m ∈ [1,M], into a co-occurrence matrix A. The matrix A stores for each pair
of VMs n1 and n2 the number of clustering solutions where n1 and n2 occurs in the
same cluster, divided by the total number of clustering solutions M .

The co-occurrence matrix represents a measure of the affinity between the VMs
and is used as a similarity matrix for a subsequent clustering step [32]. Again, we use
the spectral clustering to create the final clustering solution Cs, that groups together
similarly behaving VMs. The use of clustering ensemble aims to improve the stability

of the clustering solution with respect to the parameters of the methodology, such as
the number of bins or the length of the time series used. Indeed, merging multiple
clustering solutions in such way implements a sort of quorum-based decision system,
which is likely to improve the robustness of the clustering performance [18,19].

3.5 Alternative approach

The euclidean clustering is an alternative approach to the above presented methodol-
ogy which has been previously proposed in [8]. The euclidean clustering, depicted in
the right branch of Figure 2, aims to combine theM Bhattacharyya distance matrices
Dm to build a single distance matrix expressing the distances among all VMs. To this
aim, we consider that the set of Bhattacharyya distance matrices represent a multi-
dimensional distance between the VMs. To reduce the dimensionality of the problem
from M to 1, we combine the multiple dimensions as if we were in an euclidean
space. Hence, we define a multimetric-based distance between VMs as the sum of
squares of the corresponding Bhattacharyya distances for each metric, that is:

De(n1, n2) =

√√√√ M∑
m=1

Dm(n1, n2)2

whereDm(n1, n2) is Bhattacharyya distance between n1 and n2 according to metrics
m.

The new euclidean distance matrix De is then fed into the spectral clustering
algorithm to obtaining the final solution Ce of the euclidean clustering approach.

4 Experimental testbed

To evaluate the performance of the proposed methodology, we consider a case study
based on a dataset coming from a virtualized enterprise data center, that supports
one customer Web-based application for e-health deployed according to a multi-tier
architecture. The application is composed of a front-end tier, that hosts the J2EE
application implementing the presentation and business logic, and a back-end, that
is a set of partitioned and replicated databases on an Oracle DBMS. The application
is accessed by a few thousands of users, both private citizens and hospital operators,
with the typical daily usage patterns characterized by high resource utilization in the
office hours and lower utilization during the night. The data center is composed of
10 nodes on a Blade-based system and exploits virtualization to support the Web
application. The nodes host 110 VMs that that are divided between the two classes of
Web servers and DBMS.

We collect detailed data about the resource usage of every VM for different peri-
ods of time, ranging from 1 to 180 days. The samples are collected with a frequency
of 5 minutes. For each VM we consider 10 metrics describing the usage of differ-
ent resources related to CPU, memory, disk, and network. The complete list of the
metrics is provided in Table 1 along with a short description.

Table 1 Virtual machine metrics

Metric Description
X1 SysCallRate Rate of system calls [req/sec]
X2 CPU CPU utilization [%]
X3 DiskAvl Available disk space [%]
X4 CacheMiss Cache miss [%]
X5 Memory Physical memory utilization [%]
X6 PgOutRate Rate of memory pages swap-out [pages/sec]
X7 InPktRate Rate of network incoming packets [pkts/sec]
X8 OutPktRate Rate of network outgoing packets [pkts/sec]
X9 AliveProc Number of alive processes
X10 ActiveProc Number of active processes

To the above metrics, we apply the methodology described in Section 3. For each
metric m of VM n we compute the normalized histogram Hn

m, expressing the be-
havior of the VM according to considered metric. Then, the generated histograms
are used to compute the per-metric Bhattacharyya distance matrix Dm, representing
the distances between each pair of VMs according to metric m. The next step of the
proposed ensemble approach applies the spectral clustering to each distance matrix
Dm. We run 103 times the internal k-means clustering and we select the best solution
(as described in Section 3.3) which represents the per-metric clustering solution Cm.
Finally, we carry out the ensemble of the per-metric clustering solutions, creating the
co-occurrence matrix and applying on it the final spectral clustering step to produce
the final vector solution Cs.

We also implement the alternative approach based on euclidean clustering. In this
case, we take the Bhattacharyya distance matrices Dm produced as output of the
second methodology step, and compute the multimetric-based distance matrix De,
which represent the distance between each pair of VMs as if we were in an euclidean
space. A final step of spectral clustering is applied to the matrix De and produces the
final vector solution Ce.

The methodology has been implemented using popular technologies for data
management and analysis. Specifically, we use the R language1 for the statistical
analysis functions, Python2 for the task of reading and writing data, and as a wrapper
for the R core. Finally, we use Bourne shell3 to invoke the main steps of the method-
ology. These choices ensure that our proposal can be easily deployed in currently
available cloud infrastructures.

To evaluate the performance of the proposed clustering methodology, we consider
as the main metric the clustering purity [1]. Purity, that is one of the most popular
metrics for cluster evaluation, considers the fraction of correctly identified VMs as the
measure of the clustering performance. Specifically, purity is defined by comparing
the generic final solution C of the VM clustering with the ground truth vector C∗,
which represents the correct classification of Web servers and DBMS servers into two

1 R project home page: http://www.r-project.org/
2 Python home page: http://www.python.org/
3 Bourne shell home page: http://www.gnu.org/software/bash/

clusters. Purity is thus defined as:

purity =
|{cn : cn = cn∗,∀n ∈ [1, N]}|

N

where cn is the cluster to which VM n is assigned in the considered solution, cn∗ is
the correct classification of VM n, and N is the number of clustered VMs.

5 Performance evaluation

In this section, we apply the proposed methodology to the described testbed to evalu-
ate the performance of automatically clustering similar VMs based on their resource
usage. The main goals of this experimental evaluation are:

– To evaluate the performance of the proposed methodology, based on clustering
ensemble, and compare it with the alternative approach, based on the euclidean
distance between VMs

– To investigate the sensitivity of the methodology performance with respect to the
number of histogram bins used to generate the quantitative description of VM
behavior

– To evaluate the impact on performance of reducing the set of metrics considered
for VM clustering

– To perform a sensitivity analysis of methodology performance and clustering time
with respect to the number of VMs to cluster

All experiments evaluate the performance of the methodology considering time
series of VM metric samples of different lengths, ranging from 1 to 180 days. Except
when differently stated, the Friedman-Diaconis rule is used to compute the number
of bins in the histograms of the VM metrics.

5.1 Methodology evaluation

Table 2 shows in the last column (Ensemble) the purity achieved by the proposed
methodology for different time series lengths. The previous columns (from 2 to 11)
of the table report the purity values obtained by clustering VMs on the basis of per-
metric Bhattacharyya distance. The last line of the table presents the average purity
values computed over the different time series lengths. For each line, the highest value
of clustering purity is emphasized in bold font.

We note that the performance of the ensemble approach always exceeds or (in few
cases) equals the purity achievable by considering per-metric clustering, obtaining a
purity that ranges from 1 to 0.84 as the time series length decreases from 180 to 1
days, with a mean purity value of 0.91. It is worth to note that the purity remain rather
high even for very short time series of only one day, while other proposals in liter-
ature [7,6] present a performance degradation when the amount of data to describe
the VM behavior is reduced. Some of the single metrics achieve quite poor results,
such as X4 and X6, while other metrics perform better, such as X2 and X8. How-
ever, none of the metrics reaches a mean purity value close to 0.9, while the ensemble

Table 2 Purity for ensemble vs. per-metric clustering

Time series Metric
length [days] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Ensemble

180 0.70 1.00 1.00 0.60 0.95 0.75 0.75 0.95 0.95 0.88 1.00
120 0.82 0.90 0.64 0.65 1.00 0.63 1.00 0.75 0.60 0.60 1.00
60 0.82 1.00 0.88 0.66 1.00 0.56 0.94 0.93 0.68 0.65 1.00
40 0.80 0.75 0.80 0.65 0.90 0.60 0.90 0.85 0.65 0.65 0.95
30 0.76 0.80 0.82 0.63 0.85 0.62 0.68 0.88 0.63 0.65 0.91
20 0.76 0.81 0.79 0.62 0.79 0.58 0.87 0.87 0.62 0.69 0.89
15 0.79 0.82 0.79 0.62 0.74 0.62 0.85 0.84 0.62 0.61 0.87
10 0.78 0.81 0.78 0.63 0.71 0.58 0.83 0.84 0.58 0.58 0.86
5 0.78 0.82 0.77 0.65 0.71 0.57 0.80 0.81 0.56 0.58 0.86
4 0.78 0.82 0.76 0.63 0.70 0.57 0.79 0.81 0.56 0.56 0.86
3 0.77 0.81 0.72 0.62 0.68 0.56 0.79 0.80 0.54 0.55 0.85
2 0.76 0.81 0.68 0.58 0.68 0.55 0.78 0.80 0.53 0.54 0.85
1 0.75 0.80 0.68 0.56 0.67 0.55 0.77 0.80 0.52 0.54 0.84

Mean 0.77 0.84 0.78 0.62 0.80 0.59 0.83 0.84 0.63 0.63 0.91

clustering exceeds this value. The reason for the best performance in terms of mean
purity value can be found in the stability of the results of the ensemble clustering: the
purity of the proposed methodology shows a monotonically decreasing behavior for
decreasing time series length, while no other metric presents the same trend. Even the
best-performing metrics show negative peaks of purity in correspondence to certain
time series lengths, for example 120 and 40 days. To investigate the reason of such
negative peaks, we carried out some statistical analysis and we found the presence of
multiple local maxima (modes) in the probability distributions of almost every metric;
the multi-modal nature of the distributions is likely to hinder the performance of the
VM clustering process. The variable behavior showed by the per-metric clustering is
undesirable, because it means that per-metric distances are too sensitive to the length
of the time series and may not give stable results in describing VMs similarities for
clustering purposes. On the other hand, the monotonic decrease of purity achieved
by the ensemble clustering is an expected and desirable behavior, which is due to the
increasing difficulty to correctly associate VMs to the belonging class when shorter
sequences of characterizing measurements are available.

It is worth to analyze in details the results related to the metrics X2 and X5

(representing CPU and memory, respectively), which typically are the only resources
considered in the state-of-the-art for monitoring and management tasks [4,34,16,
30]. From Table 2 we see that the use of these single metrics is not sufficient to
successfully capture the VMs behavior for clustering purposes. For these metrics, the
clustering results not only are worse than the ensemble results for almost every length
of the time series, but they also suffer of excessive sensitivity to this parameter. These
results confirm the need of considering together multiple resources to characterize
VMs behavior for automatic clustering purposes.

5.2 Ensemble vs. euclidean clustering

Let us now compare the results of the proposed ensemble clustering methodology
with the alternative approach based on euclidean clustering. Figure 5 shows the purity
of VM clustering as a function of time series length for the ensemble and euclidean
approaches.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

180 120 60 40 30 20 15 10 5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

Ensemble
Euclidean

Fig. 5 Purity of Ensemble vs. Euclidean clustering

The euclidean approach shows worse and more variable results with respect to the
monotonically decreasing curve of the ensemble clustering, with negative peaks for
120 and 40 days. It is interesting to note that the variable behavior of the euclidean-
based curve reflects the instability of the per-metric contributions previously ana-
lyzed. For example, we can see from Table 2 that basically all the metrics, included
the best-performing ones, present negative peaks corresponding exactly to the time
series lengths of 120 and 40 days. On the other hand, the ensemble clustering, which
implements a quorum-based mechanism, seems to overcome this issue and stabilize
the results over all the time series length.

To better understand why the VM clustering benefits from a quorum-based mech-
anism, we investigate the relationships between the per-metric clustering solutions.
Specifically, we want to evaluate the capability of clustering based on different single
metrics to identify sets of correctly clustered VMs that are not completely overlapped.
To this aim, we exploit the Jaccard Index, also known as the Jaccard similarity coef-
ficient: this index measures the ratio between the size of the intersection and the size
of the union of two sample sets, and it is typically used to compare the sets similar-
ity. For each metric m ∈ [1,M], we consider the per-metric clustering solution Cm.
From Cm we extract the sub-vector C

′

m including only the elements that represent
VMs assigned to the correct cluster identifier according to the ground truth vector
C∗. We consider the Jaccard index J(m1,m2) between two metrics m1 and m2 as:

J(m1,m2) =
|C′m1

∩C
′

m2
|

|C′m1
∪C′m2

|

The Jaccard index may take values in the range [0, 1]: a value of J(m1,m2) equal
to 0 means that the clustering solutions for metrics m1 and m2 have no correct VM
assignments in common, while a value of 1 means that the two per-metric clustering
solutions correctly cluster exactly the same set of VMs. Table 3 shows some statistical
properties of the Jaccard Index computed over all the possible pairs of the M metrics
for time series lengths ranging from 1 to 180 days.

Table 3 Similarity of clustering solutions for per-metric distance

Jaccard Time series length [days]
index 180 60 30 15 5 3 1
Mean 0.68 0.62 0.62 0.63 0.55 0.58 0.58

Std. dev. 0.19 0.20 0.16 0.19 0.20 0.18 0.15

The mean value of the Jaccard index is between 0.55 and 0.68 for every time
series length, meaning that each pair of metrics has, on average, a common intersec-
tion of correctly clustered VMs that is between 55% and 68% of the correct solutions
identified by each single metric. Furthermore, we see that the standard deviation never
exceeds 0.20 for every time series length. These results show that the per-metric clus-
tering correct solutions present a common intersection, but this intersection is almost
never complete, being limited to 60% on average. This means that each metric is able
to capture similarities among VMs behavior that are different from the similarities
detected by other metrics. In other words, each metric gives its peculiar contribution
to the quorum-based mechanism which is at the base of the ensemble clustering, thus
contributing to obtain stable performance not achievable by relying on per-metric
clustering or summing up single metric distances, as in the euclidean approach.

Let us now perform a further comparison between ensemble and euclidean clus-
tering approaches: we evaluate the sensitivity of the two approaches to the rule used
to define the number of bins in the generation of metric histograms. For the previous
experiments, we used the Freedman-Diaconis (FD) rule to generate the histograms
of the metric distributions. In this experiment, we compare the purity of ensemble
and euclidean clustering approaches when three different rules are used for the his-
togram generation: Freedman-Diaconis (FD), Scott and Square Root. Figure 6 shows
the results as a function of the time series length.

It appears very clearly from the figure that the rule choice has a completely dif-
ferent impact on the ensemble and euclidean clusterings. The proposed ensemble
approach (Figure 6(a)) achieves very similar results for every rule: the use of the FD
rule leads to slightly better purity, but the curves are all very close for almost every
time series length. On the contrary, the euclidean clustering (Figure 6(b)) appears
to be extremely sensitive to the choice of the rule to compute histograms. We should
consider that Scott and Square Root follows very different criteria to compute the his-
togram characteristics: Square Root determines the number of histogram bins only on
the basis of the number of measurements in the time series, while Scott exploits the
characteristics of the metric distribution. However, in both cases we can see that the
achieved purity decreases significantly whit respect to the FD rule, dropping below
0.6 for several time series lengths.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

180 120 60 40 30 20 15 10 5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

Ensemble (FD)
Ensemble (Scott)
Ensemble (Sqrt)

(a) Ensemble clustering

 0.5

 0.6

 0.7

 0.8

 0.9

 1

180 120 60 40 30 20 15 10 5 4 3 2 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

Time series length [days]

Euclidean (FD)
Euclidean (Scott)
Euclidean (Sqrt)

(b) Euclidean clustering

Fig. 6 Impact of different rules to compute histogram bins number

These results show that the performance of the euclidean clustering is very un-
stable not only, as previously shown, with respect to the time series length, but also
to the choice of the rule for generating histograms. On the other hand, the stability
of the ensemble clustering represents an important result for the applicability of the
proposed methodology for VM clustering in cloud computing environments. Since
there is no a generally accepted “best” rule to determine the histogram bin number
for a given distribution, the stability with respect to the rule choice represents a fun-
damental feature for any automated approach for VM clustering.

5.3 Sensitivity to histogram bin number

In this last experiment, we aim to provide a sensitivity analysis evaluating the stability
of the ensemble clustering performance with respect to the histogram characteristics.
Specifically, we evaluate the clustering purity for different values of histogram bin
number.

We take as a reference points Freedman-Diaconis and Scott rules, because they
share a desirable feature for the automated generation of metric histograms: the num-
ber of bins is computed based on the characteristics of metric distribution, but it is
independent of the time series length, oppositely to the Square Root approach. We
also consider that the number of bins generated according to the Freedman-Diaconis
rule tends to be significantly higher (1 or 2 orders of magnitude) with respect to the
Scott case. For these reasons, we choose to consider an interval of bin numbers which
includes the gap between the two rules, and also explores lower and higher numbers
of bins.

Since the bin numbers generated by Freedman-Diaconis and Scott rules may dif-
fer of orders of magnitude depending on the specific metric, we use a logarithmic
scale to fix the number of bins to consider for the sensitivity analysis. For each met-
ric m ∈ [1,M], BFDm and BScottm are the number of bins according to Freedman-
Diaconis and Scott rules, respectively. We choose to evaluate two intermediate points
between the two rules; hence, we use the cube root of the ratio between BFDm and
BScottm as the step Πm of the sequence of bin numbers to evaluate:

Πm =

(
BFDm
BScottm

) 1
3

,∀m ∈ [1,M]

We consider the set of vectors Bi, i ∈ [l, U], where each vector Bi represents the
sequence of bin numbers to be used for each metric and is defined as follows:

Bi = {Bim : BScottm × (Πm)i,m ∈ [1,M]}∀i ∈ [l, U]

The values of l and U define the lower and upper bounds for the interval of bin
numbers to evaluate. Since we want to exceed the gap between Freedman-Diaconis
and Scott rules, we consider l = −2 and U = 4. It is worth to note thatB0

m = BScottm

and B3
m = BFDm for every metric m.

Figure 7 shows the clustering purity as a function of different time series lengths
(x axis) and histogram bin numbers (y axis). We observe that for every bin num-
ber higher that B0 (corresponding to Scott rule) the achieved purity presents simi-
lar behavior, reaching values equal to 1 for the longest time series and decreasing
monotonically as the time series length goes down to 1 day, with a clustering purity
which always remains above 0.82 even for the shorter time series. On the other hand,
the clustering performance significantly decreases for low number of bins (B−1 and
B−2). Specifically, it is evident that for bin numbers lower than B0, the performance
decreases with the number of bins, ranging from 0.67 to 0.97 for B−1 and from 0.54
to 0.95 for B−2. The reason for these worse results is related to a too low number of
bins leading to coarse-grained histograms, which are not able to exhaustively capture
the behavior of the VMs.

18012060 40 30 20 15 10 5 4 3 2 1 			B
-2 			B

-1 			B
0 		B

1 		B
2 		B

3 B
4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
lu

s
te

ri
n

g
 P

u
ri
ty

 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

Fig. 7 Clustering purity for different time series lengths and histogram bin numbers

This results strengthens the characteristic of stability of the ensemble clustering
with respect to both the length of the metric time series and the histogram characteris-
tics. Furthermore, an interesting insight on the suitable way to determine the number
of bins of the histograms can be deduced from the observed results. This experiment
suggests that the Freedman-Diaconis rule is the better choice for the generation of the

quantitative VM description. Indeed, the use of the Freedman-Diaconis rule leads to
the highest and most stable clustering purity for every time series length, as shown in
Figure 7. Moreover, using higher number of bins is not desirable because it could eas-
ily increase the computational costs of the Bhattacharyya distances without adding
any gain in the clustering performance. On the other hand, significantly decreasing
the number of bins may cause worse results: in this sense, we can consider the bin
numbers determined by the Scott rule as a sort of low boundary under which the
clustering performance is likely to significantly decrease.

5.4 Sensitivity to metric selection

In this experiment we aim to evaluate how the methodology performance varies when
the number of metrics considered for clustering decreases. To this aim, we consider
the purity obtained by clustering VMs on the basis of the per-metric Bhattacharyya
distances, which are reported in Table 2, Section 5.1. In Table 4 we sort the metrics
in decreasing order of per-metric clustering purity, averaged over all the time series
lengths (180 to 1 days). We note that the four best performing metrics (in bold in the
table) are related to CPU, memory and I/O resources, which are the main resources
typically considered in the state-of-the-art to characterize VM behavior [4,34,16,
30].

Table 4 VM metrics sorted by decreasing clustering purity

Metric Mean purity
X2 CPU 0.84
X8 OutPktRate 0.84
X7 InPktRate 0.83
X5 Memory 0.80
X3 DiskAvl 0.78
X1 SysCallRate 0.77
X9 AliveProc 0.63
X10 ActiveProc 0.63
X4 CacheMiss 0.62
X6 PgOutRate 0.59

To investigate the stability of the methodology performance for different sets of
metrics, we first apply the clustering ensemble methodology considering the basic set
composed of these four metrics (X2, X8, X7, X5); then, we carry out the clustering
ensemble by adding one-by one the remaining metrics as listed in Table 4, that is in
decreasing order of achieved per-metric clustering purity. The results of this experi-
ment carried out for short time series lengths (from 1 to 4 days) are reported in Fig. 8,
where boxes and error bars respectively represent mean and standard deviation of the
clustering purity achieved for different sets of metrics.

From Fig. 8 we observe that the clustering purity remains surprisingly stable for
different sets of metrics for all the considered time series lengths. In particular, the
variation of the clustering purity always remains below 1.5%. To provide additional

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 days 3 days 2 days 1 day

C
lu

s
te

ri
n

g
 p

u
ri
ty

Time series length

Mean (Standard Deviation Error Bars)

Fig. 8 Sensitivity to metric selections

insight, we also show in Table 5 the disaggregate results for short time series (from
4 to 1 days): the clustering purity is reported for different set of metrics, starting
from the basic set of 4 metrics and then adding one metric at the time, as previously
described.

Table 5 Clustering purity for different metric selections

Time series Number of Metrics
length [days] 4 5 6 7 8 9 10

4 0.875 0.870 0.868 0.865 0.865 0.862 0.861
3 0.868 0.861 0.859 0.856 0.853 0.852 0.852
2 0.864 0.860 0.858 0.855 0.853 0.851 0.850
1 0.856 0.854 0.851 0.848 0.845 0.842 0.841

As expected, clustering purity monotonically decreases as we pass from the ba-
sic set of the four best performing metrics to all the ten metrics initially considered,
showing however a decrease in the order of 1.5%. This result is important for the
applicability of the proposed methodology because it shows how the clustering per-
formance is not highly dependent on the choice of the metrics, unlike the approach
previously presented in [6]: in the case of ensemble clustering, the inclusion of the
main resources related to CPU, memory and network I/O in the set of considered
metrics should guarantee good performance in VM clustering. At the same time, a
broader choice of metrics does not negatively affect the achieved results.

5.5 Sensitivity to VMs number

In this last experiment we analyze the sensitivity of the methodology performance and
execution time with respect to the number of VMs to cluster. To this aim, for each of
the 110 VMs we consider multiple time series with the length of one-day (24 hours)
of the four metrics (X2,X8,X7,X5) which constitute the minimum set considered in

the previous example. In this way, we emulate the presence of an increasing number
of VMs to cluster, ranging from 110 to 1100. Fig. 9 shows the achieved purity and
the clustering time as a function of the number of VMs to cluster.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

110 220 330 440 550 660 770 880 990 1100
 5

 10

 15

 20

 25

 30

 35

 40

C
lu

s
te

ri
n
g
 P

u
ri
ty

C
lu

s
te

ri
n
g
 T

im
e
 [
s
e
c
]

Number of VM

Clustering Purity
Clustering Time

Fig. 9 Clustering purity and execution time for increasing number of VMs

We observe that the clustering purity remains quite stable for increasing num-
ber of VMs, showing a slight decrease from 0.856 to 0.817 as we increase the VMs
number by a factor of 10. As regards the execution time for the clustering phase, we
should consider that the spectral clustering algorithm is executed multiple times in the
proposed ensemble approach: a step of clustering is carried out on each per-metric
distance matrix, then a final clustering is performed on the co-occurrence matrix gen-
erated by the ensemble. Hence, the spectral clustering is executedM+1 times, where
M is the number of metrics considered for clustering (M = 4 in this experiment).
From Fig. 9 we note that the total clustering time linearly increases with the number
of VMs, which is consistent with the known computational cost of the spectral clus-
tering algorithm [23] and remains in the order of tens of seconds even for setups in
the order of thousands of nodes. Furthermore, the low frequency of invocation of the
clustering ensemble methodology (e.g., once every one or few weeks), confirms that
the execution time does not represent an issue for the applicability of the methodol-
ogy to large cloud data centers.

5.6 Summary of results

The experimental results presented in this section can be summarized as follows:

– The proposed methodology based on ensemble clustering provides high perfor-
mance, with purity ranging from 0.84 to 1 for every time series length. Further-
more, the performance are stable, with a monotone decreasing pattern with re-
spect to the time series length.

– The ensemble clustering proves to be stable with respect to the parameters used
to compute the histograms of the metric distributions, which represent the ba-
sic quantitative description of each VM behavior. In particular, the performance
remains stable for a wide range of bin numbers unlike the preliminary solution
presented in [8].

– The achieved purity is almost independent of the set of metrics considered for
clustering, provided that the set includes the main resources considered in the
state of the art, that are CPU, memory and I/O packets.

– The sensitivity analysis with respect to the number of VMs to cluster shows that
the achieved purity remains stable even when the VM number is increased by a
factor of 10. At the same time, the clustering time has a linear dependence on the
VM number, consistently with the computational cost of the spectral clustering
algorithm.

6 Related Work

The research activities related to the scalability issues in cloud data centers concern
two main topics that are strictly correlated: resource management and infrastructure
monitoring.

Many existing studies propose resource management strategies based on the us-
age of one or few resources compared against thresholds. For example, the studies
in [4] and [16] propose solutions for consolidation of virtual machines based on adap-
tive thresholds regarding the CPU utilization values. Wood et al. [37] propose a reac-
tive, rule-based approach for virtual machine migration that defines threshold levels
regarding the usage of few specific physical server resources, such as CPU-demand,
memory allocation, and network bandwidth usage. Kusic et al. [21] address the is-
sue of virtual machine consolidation through a sequential optimization approach; the
drawback is that the proposed model requires simulation-based learning and the ex-
ecution time grows very fast even with a limited number of nodes. All these studies
perform a per-node analysis based on the usage of one or few resources; however,
these approaches are likely to suffer from scalability issues in large scale distributed
systems, such as IaaS cloud computing data centers.

Few recent studies aim to reduce the dimensionality of the resource management
problem, such as [30], [29], [33]. The studies in [30], [29] exploit a statistical analysis
based on Singular Value Decomposition (SVD) to predict the workload demand ag-
gregated on different virtual machines to anticipate overload conditions on physical
servers and trigger virtual machine migrations. Tan et al. [33] apply Principal Com-
ponent Analysis (PCA) to evaluate resource usage patterns across different nodes.
The proposal consists in placing on the same physical server virtual machines with
negatively correlated resource patterns to reduce the usage variability on the servers.
However, all these studies have a different goal with respect to our paper, because they
address the specific problem of virtual machine consolidation in cloud data centers.
Moreover, all their solutions consider only one resource, that is the CPU utilization
of virtual machines, while we aim to support management strategies that consider
multiple resources, from CPU to network and disks.

Recent studies to automatically cluster VMs with similar behavior were presented
in [7,6,8]. In [7,6] we exploit the correlation between the resource usage of virtual
machines to cluster them depending on their resource demand behavior. However,
the methodology presented in these studies suffers from some drawbacks: the clus-
tering performance decrease rapidly for short time series of resource usage as well
as in presence of periods of time, even short, where the virtual machines are idle.
In [8] we present a preliminary attempt to overcome these issues thanks to the use of
spectral clustering technique [14], [26] and of the distance of Bhattacharyya [10] to
determine the similarity between virtual machines. However, the performance of the
euclidean clustering proposed in [8] shows high sensitivity to some parameters of the
methodology, such as the choice of the rule to compute the metric histograms. The
use of clustering ensemble techniques proposed in this paper represents a clear step
ahead with respect to the previous proposals and provides a clear gain for the stability
of the automatic clustering performance.

As regards the issue of monitoring large data centers, current solutions typically
exploit frameworks for periodic collection of system status indicators. Solutions such
as Cacti4 and Munin5 are more oriented towards the periodic collection of data. Cacti
is an aggregator of data transferred through the SNMP protocol, while Munin is a
monitoring system based on a proprietary local agent interacting with a central data
collector. Both these solutions are typically oriented to medium to small data cen-
ters because of their centralized architecture that limits the overall scalability of the
data collection process. A more scalable monitoring solution is provided by Ganglia6,
which supports a hierarchical architecture of data aggregators that can improve the
scalability of data collection and monitoring process. As a result, Ganglia is widely
used to monitor large data centers [11], [25], even in cloud infrastructures [35], by
storing the behavior of nodes and virtual machines by organizing the data in time
series. Another solution for scalable monitoring is proposed in [2], where data anal-
ysis based on the map-reduce paradigm is distributed over the levels of a hierarchical
architecture to allow only the most significant information to be processed at the root
nodes. However, all these solutions share the same limitation of considering each
monitored object (being it a VM or a host) independent from the others. This ap-
proach fails to take advantage from the similarities of objects sharing the same behav-
ior. On the other hand, a class-based monitoring system may perform a fine-grained
monitoring for only a subset of objects that are representative of a class, while other
members of the same class can be monitored at a much more coarse-grained level. We
believe that integrating our solution into existing hierarchical models for monitoring
can significantly improve the scalability of monitoring operations.

7 Conclusions

Modern data centers supporting IaaS cloud computing represent a major challenge
for the monitoring and management of resources, mainly due to scalability issues

4 Cacti home page: http://www.cacti.net
5 Munin home page: http://munin-monitoring.org/
6 Ganglia Monitoring System home page: http://ganglia.sourceforge.net/

affecting large-scale cloud infrastructures. However, as more and more applications
are ready to move from traditional data centers to the cloud, scalable monitoring and
management are requirements of key importance for the success of this migration.

We propose a methodology for automatically clustering VMs into classes that
share similar behavior in order to improve the scalability of monitoring and man-
agement tasks. The methodology exploits the Bhattacharyya distance to measure the
similarity between the probability distributions of the resources usage and determine
the distance between different VMs. Furthermore, we exploit clustering ensemble
techniques to merge information about multiple VM metrics and improve the stabil-
ity of the clustering performance.

The application of the proposed methodology to a real data center hosting multi-
tier Web applications shows that the accuracy of VMs clustering ranges between
100% and 84% for every considered scenario and can reduce the amount of data
collected by one order of magnitude with respect to a traditional monitoring ap-
proach. Furthermore, we demonstrate that the clustering ensemble provides stable
performance that is almost insensitive to: (1) the choice of the number of bins in the
histograms used to compute the Bhattacharyya distance (while alternative euclidean
clustering is extremely sensitive to this parameter), (2) the set of metrics considered
for clustering, (3) the number of VMs considered in the clustering process.

References

1. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A Comparison of Extrinsic Clustering Evaluation
Metrics Based on Formal Constraints. Journal of Information Retrieval 12(4), 461–486 (2009)

2. Andreolini, M., Colajanni, M., Tosi, S.: A software architecture for the analysis of large sets of data
streams in cloud infrastructures. In: Proc. of the 11th IEEE International Conference on Computer
and Information Technology (IEEE CIT 2011). Cyprus (2011)

3. Ardagna, D., Panicucci, B., Trubian, M., Zhang, L.: Energy-Aware Autonomic Resource Allocation
in Multitier Virtualized Environments. IEEE Transactions on Services Computing 5(1), 2 –19 (2012)

4. Beloglazov, A., Buyya, R.: Adaptive Threshold-Based Approach for Energy-Efficient Consolidation
of Virtual Machines in Cloud Data Centers. In: Proc. of (MGC’10). Bangalore, India (2010)

5. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their
probability distributions. Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943)

6. Canali, C., Lancellotti, R.: Automated Clustering of Virtual Machines based on Correlation of Re-
source Usage. Communications Software and Systems 8(4) (2012)

7. Canali, C., Lancellotti, R.: Automated Clustering of VMs for Scalable Cloud Monitoring and Man-
agement. In: Proc. of 20th International Conference on Software, Telecommunications and Computer
Networks (SOFTCOM’12). Split, Croatia (2012)

8. Canali, C., Lancellotti, R.: Automatic virtual machine clustering based on Bhattacharyya distance for
multi-cloud systems. In: Proc. of the 1st International Workshop on Multi-cloud Applications and
Federated Clouds, (MultiCloud’13), pp. 45–52. Prague, Czech Republic (2013)

9. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: OSDI, pp. 173–186 (1999)
10. Choi, E., Lee, C.: Feature extraction based on the Bhattacharyya distance. Pattern Recognition 36(8),

1703 – 1709 (2003)
11. Chung, W.C., Chang, R.S.: A new mechanism for resource monitoring in Grid computing. Future

Generation Computer Systems 25(1), 1 – 7 (2009)
12. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Pro-

ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data min-
ing, KDD ’04, pp. 551–556. ACM, New York, NY, USA (2004). DOI 10.1145/1014052.1014118.
URL http://doi.acm.org/10.1145/1014052.1014118

13. Durkee, D.: Why cloud computing will never be free. Queue 8(4), 20:20–20:29 (2010)

14. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for
clustering. Pattern Recognition 41(1), 176 – 190 (2008)

15. Freedman, D., Diaconis, P.: On the histogram as a density estimator:L2 theory. Probability Theory
and Related Fields 57(4), 453–476 (1981)

16. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool management: Reactive versus proac-
tive or let’s be friends. Computer Networks 53(17) (2009)

17. Gong, Z., Gu, X.: PAC: Pattern-driven Application Consolidation for Efficient Cloud Computing. In:
Proc. of IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecom-
munication Systems (MASCOTS’10). Miami Beach, Florida (2010)

18. Gullo, F., Tagarelli, A., Greco, S.: Diversity-based Weighting Schemes for Clustering Ensembles. In:
Proc. of the 9th SIAM International Conference on Data Mining (SDM’09). Sparks, Nevada, USA
(2009)

19. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651 – 666
(2010)

20. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - An S4 package for kernel methods in
R. Tech. Rep. 9, WU Vienna University of Economics and Business (2004)

21. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and Performance Manage-
ment of Virtualized Computing Environment via Lookahead. Cluster Computing 12(1), 1–15 (2009)

22. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007). DOI
10.1007/s11222-007-9033-z. URL http://dx.doi.org/10.1007/s11222-007-9033-z

23. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge Univer-
sity Press, New York, NY, USA (2008)

24. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware
virtual machine placement. In: Proceedings of the 29th Conference on Information Communications,
INFOCOM’10. San Diego, California, USA (2010)

25. Naeem, A.N., Ramadass, S., Yong, C.: Controlling Scale Sensor Networks Data Quality in the Ganglia
Grid Monitoring Tool. Communication and Computer 7(11), 18–26 (2010)

26. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: ADVANCES
IN NEURAL INFORMATION PROCESSING SYSTEMS, pp. 849–856. MIT Press (2001)

27. Sanguinetti, G., Laidler, J., Lawrence, N.: Automatic determination of the number of clusters using
spectral algorithms. In: Machine Learning for Signal Processing, 2005 IEEE Workshop on, pp. 55
–60 (2005). DOI 10.1109/MLSP.2005.1532874

28. Scott, D.W.: On Optimal and Data-Based Histograms. Biometrika 66(3), 605–610 (1979)
29. Setzer, T., Stage, A.: Decision support for virtual machine reassignments in enterprise data centers.

In: Proc. of IEEE/IFIP Network Operations and Management Symposium Workshops (NOMS’10).
Osaka, Japan (2010)

30. Setzer, T., Stage, A.: Filtering multivariate workload non-conformance in shared IT-infrastructures.
In: Proc. of IFIP/IEEE International Symposium on Integrated Network Management (IM’11).
Dublin, Ireland (2011)

31. Singh, R., Shenoy, P.J., Natu, M., Sadaphal, V.P., Vin, H.M.: Predico: A System for What-if Analysis
in Complex Data Center Applications. In: Proc. of 12th International Middleware Conference. Lisbon,
Portugal (2011)

32. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research 3, 583–617 (2003)

33. Tan, J., Dube, P., Meng, X., Zhang, L.: Exploiting Resource Usage Patterns for Better Utilization Pre-
diction. In: Proc. of the 31st International Conference on Distributed Computing Systems Workshops
(ICDCSW’11). Minneapolis, USA (2011)

34. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A scalable application placement controller for
enterprise data centers. In: Proceedings of the 16th international conference on World Wide Web,
WWW’07. Banff, Alberta, Canada (2007)

35. Tu, C.Y., Kuo, W.C., Teng, W.H., Wang, Y.T., Shiau, S.: A Power-Aware Cloud Architecture with
Smart Metering. In: Proc. of 39th International Conference on Parallel Processing Workshops
(ICPPW’10). San Diego, CA (2010)

36. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box strategies for virtual
machine migration. In: Proceedings of the 4th USENIX conference on Networked systems design
and implementation, NSDI’07. Cambridge, MA (2007)

37. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box strategies for virtual
machine migration. In: Proc. of the 4th USENIX Conference on Networked systems design and
implementation, NSDI’07. Cambridge, MA (2007)

